

Lecture Notes in Computer Science 5136
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

T.C. Nicholas Graham Philippe Palanque (Eds.)

Interactive Systems
Design, Specification,
and Verification

15th International Workshop, DSV-IS 2008
Kingston, Canada, July 16-18, 2008
Proceedings

13

Volume Editors

T.C. Nicholas Graham
School of Computing
Queen’s University
Kingston, Ontario, Canada
E-mail: graham@cs.queensu.ca

Philippe Palanque
IRIT
University Paul Sabatier (Toulouse 3)
Toulouse, France
E-mail: palanque@irit.fr

Library of Congress Control Number: 2008930133

CR Subject Classification (1998): H.5.2, H.5, I.3, D.2, F.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-70568-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-70568-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12436422 06/3180 5 4 3 2 1 0

Preface

The modern world has made available a wealth of new possibilities for interacting
with computers, through advanced Web applications, while on the go with handheld
smart telephones or using electronic tabletops or wall-sized displays. Developers of
modern interactive systems face great problems: how to design applications which will
work well with newly available technologies, and how to efficiently and correctly
implement such designs. Design, Specification and Verification of Interactive Systems
2008 was the 15th of a series of annual workshops devoted to helping designers and
implementers of interactive systems unleash the power of modern interaction devices
and techniques.

DSV-IS 2008 was held at Queen’s University in Kingston, Canada, during July
16–18, 2008. This book collects the best papers submitted to the workshop. There were
17 full papers, 10 late-breaking and experience report papers, and two demonstrations.
Keynote presentations were provided by Judy Brown of Carleton University and Randy
Ellis of Queen’s University.

The first day of the workshop addressed the problems of user interface evaluation
and specification, with particular emphasis on the use of task models to provide high-
level approaches for capturing the intended functionality of a user interface. Day two
continued this theme, examining techniques for modeling user interfaces, particularly
for mobile and ubiquitous applications. Presenters also discussed advanced implemen-
tation techniques for interactive systems. Finally, day three considered how to archi-
tect interactive systems, and returned to the themes of evaluation and specification.

The workshop was hosted by IFIP Working Group 2.7/13.4 on User Interface En-
gineering. We thank the 30 members of our international Program Committee for their
hard work in the paper selection process. We also gratefully acknowledge Precision
Conference for their generous donation of the PCS reviewing system.

We hope that you enjoy this record of the DSV-IS 2008 workshop, and find it fruit-
ful for your work and research.

July 2008 T.C. Nicholas Graham
Philippe Palanque

Organization

Conference Chairs

T.C. Nicholas Graham, Queen's University, Canada
Philippe Palanque, IHCS-IRIT, Université Paul Sabatier, France

Program Committee

Simone Diniz Junqueira Barbosa, PUC-Rio, Brazil
Rémi Bastide, IRIT - C.U. Jean-François Champollion, France
Regina Bernhaupt, ICT&S, University of Salzburg, Austria
Ann Blandford, UCL, UK
Judith Brown, Carleton University, Canada
Gaelle Calvary, University of Grenoble, France
José Creissac Campos, University of Minho, Portugal
Stéphane Chatty, ENAC, France
Prasun Dewan, University of North Carolina, USA
Anke Dittmar, University of Rostock, Germany
Alan Dix, Lancaster University, UK
Gavin Doherty, Trinity College Dublin, Ireland
Peter Forbrig, University of Rostock, Germany
Philip Gray, University of Glasgow, UK
Morten Borup Harning, Priway, Denmark
Michael Harrison, University of Newcastle, UK
Chris Johnson, University of Glasgow, UK
Joaquim A Jorge, Technical University of Lisbon, Portugal
Kris Luyten, Expertise Centre for Digital Media, Hasselt University, Belgium
Mieke Massink, CNR, Pisa, Italy
Francisco Montero, UCLM, Spain
Laurence Nigay, University of Grenoble, France
Nuno Nunes, University of Madeira, Portugal
Fabio Paterno, ISTI-CNR, Pisa, Italy
Greg Phillips, Royal Military College, Canada
Kevin Scheider, University of Saskatchewan, Canada
Harold Thimbleby, University of Swansea, Wales
Claus Unger, University of Hagen, Germany
Jean Vanderdonckt, Université Catholique de Louvain, Belgium
Marco Winckler, IHCS-IRIT, Université Paul Sabatier, France

Table of Contents

EMU in the Car: Evaluating Multimodal Usability of a Satellite
Navigation System . 1

Ann Blandford, Paul Curzon, Joanne Hyde, and George Papatzanis

Comparing Mixed Interactive Systems for Navigating 3D Environments
in Museums . 15

Emmanuel Dubois, Cédric Bach, and Philippe Truillet

An Attentive Groupware Device to Mitigate Information Overload 29
Antonio Ferreira and Pedro Antunes

Multi-fidelity User Interface Specifications . 43
Thomas Memmel, Jean Vanderdonckt, and Harald Reiterer

HOPS: A Prototypical Specification Tool for Interactive Systems 58
Anke Dittmar, Toralf Hübner, and Peter Forbrig

Systematic Analysis of Control Panel Interfaces Using Formal Tools 72
J. Creissac Campos and M.D. Harrison

Investigating System Navigation Ergonomics through Model
Verification . 86

Alexandre Scaico, Maria de F.Q. Vieira,
Markson R.F. de Sousa, and Charles Santoni

Tool Support for Representing Task Models, Dialog Models and
User-Interface Specifications . 92

D. Reichart, A. Dittmar, P. Forbrig, and M. Wurdel

Towards a Library of Workflow User Interface Patterns 96
Josefina Guerrero Garćıa, Jean Vanderdonckt,
Juan Manuel González Calleros, and Marco Winckler

Specification and Verification of Multi-agent Systems Interaction
Protocols Using a Combination of AUML and Event B 102

Leila Jemni Ben Ayed and Fatma Siala

Pattern Languages as Tool for Discount Usability Engineering 108
Elbert-Jan Hennipman, Evert-Jan Oppelaar, and Gerrit van der Veer

Cascading Dialog Modeling with UsiXML . 121
Marco Winckler, Jean Vanderdonckt, Adrian Stanciulescu, and
Francisco Trindade

VIII Table of Contents

Designing Graphical Elements for Cognitively Demanding Activities:
An Account on Fine-Tuning for Colors . 136

Gilles Tabart, Stéphane Conversy, Jean-Luc Vinot, and
Sylvie Athènes

Lightweight Coding of Structurally Varying Dialogs 149
Michael Dunlavey

ReWiRe: Designing Reactive Systems for Pervasive Environments 155
Geert Vanderhulst, Kris Luyten, and Karin Coninx

Toward Multi-disciplinary Model-Based (Re)Design of Sustainable User
Interfaces . 161

Jan Van den Bergh, Mieke Haesen, Kris Luyten,
Sofie Notelaers, and Karin Coninx

A Model-Based Approach to Supporting Configuration in Ubiquitous
Systems . 167

Tony McBryan and Phil Gray

Exploiting Web Services and Model-Based User Interfaces for
Multi-device Access to Home Applications . 181

Giulio Mori, Fabio Paternò, and Lucio Davide Spano

Resources for Situated Actions . 194
Gavin Doherty, Jose Campos, and Michael Harrison

An Architecture and a Formal Description Technique for the Design
and Implementation of Reconfigurable User Interfaces 208

David Navarre, Philippe Palanque, Jean-François Ladry, and
Sandra Basnyat

COMET(s), a Software Architecture Style and an Interactors Toolkit
for Plastic User Interfaces . 225

Alexandre Demeure, Gaëlle Calvary, and Karin Coninx

Executable Models for Human-Computer Interaction 238
Marco Blumendorf, Grzegorz Lehmann, Sebastian Feuerstack, and
Sahin Albayrak

A Middleware for Seamless Use of Multiple Displays 252
Satoshi Sakurai, Yuichi Itoh, Yoshifumi Kitamura,
Miguel A. Nacenta, Tokuo Yamaguchi, Sriram Subramanian, and
Fumio Kishino

Graphic Rendering Considered as a Compilation Chain 267
Benjamin Tissoires and Stéphane Conversy

Table of Contents IX

Towards Specifying Multimodal Collaborative User Interfaces: A
Comparison of Collaboration Notations . 281

Frédéric Jourde, Yann Laurillau, Alberto Moran, and Laurence Nigay

Towards Characterizing Visualizations . 287
Christophe Hurter and Stéphane Conversy

Towards Usability Evaluation for Smart Appliance Ensembles 294
Gregor Buchholz and Stefan Propp

Task Model Refinement with Meta Operators . 300
Maik Wurdel, Daniel Sinnig, and Peter Forbrig

Utilizing Dynamic Executable Models for User Interface
Development . 306

Grzegorz Lehmann, Marco Blumendorf, Sebastian Feuerstack, and
Sahin Albayrak

Author Index . 311

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 1–14, 2008.
© Springer-Verlag Berlin Heidelberg 2008

EMU in the Car: Evaluating Multimodal Usability of a
Satellite Navigation System

Ann Blandford1, Paul Curzon2, Joanne Hyde3, and George Papatzanis2

1 UCL Interaction Centre, University College London, Remax House, 31-32 Alfred Place
London WC1E 7DP, U.K

A.Blandford@ucl.ac.uk
http://www.uclic.ucl.ac.uk/annb/

2 Queen Mary, University of London, U.K
3 formerly at Middlesex University U.K

Abstract. The design and evaluation of multimodal systems has traditionally
been a craft skill. There are some well established heuristics, guidelines and
frameworks for assessing multimodal interactions, but no established method-
ologies that focus on the design of the interaction between user and system in
context. In this paper, we present EMU, a systematic evaluation methodology
for reasoning about the usability of an interactive system in terms of the modali-
ties of interaction. We illustrate its application using an example of in-car navi-
gation. EMU fills a niche in the repertoire of analytical evaluation approaches
by focusing on the quality of interaction in terms of the modalities of interac-
tion, how modalities are integrated, and where there may be interaction break-
downs due to modality clashes, synchronisation difficulties or distractions.

Keywords: usability evaluation, multimodal systems, in-car navigation sys-
tems, satellite navigation systems.

1 Introduction

There is a substantial literature on the design and use of multimodal systems, most of
which takes either a system or a user perspective. Taking a system perspective, issues
of concern include how to select output modalities to communicate most effectively
(e.g. [9]) and how to integrate user input expressed through multiple modalities to
correctly interpret the user’s meaning (e.g. [15]). Conversely, much work from a user
perspective is concerned with how users perceive and work with system output in
different modalities (e.g. [8]) or how users select modalities of communication (e.g.
[14]). Little work has taken an integrative approach, considering both user and system
perspectives in parallel. The work reported here takes such an approach, developing a
prototype methodology for reasoning about the design of multimodal interactive sys-
tems to accommodate both input and output within the interaction. As an integrative
approach, it does not consider the fine-grained details of either system implementa-
tion or user cognition, but focuses more broadly on how the two interact.

2 A. Blandford et al.

The method, Evaluating Multimodal Usability (EMU) was initially developed and
tested using as the main case study a robotic arm interface [10]. The approach pre-
sented and illustrated here is a refinement of the method, as described below.

2 Background: Multimodal Interaction

Multimodal systems are widely considered to be ones that integrate multiple modes of
input or output, typically using non-standard interaction devices. The standard con-
figuration of keyboard and mouse for input and graphics, text and audio for output is
rarely described as “multimodal”, though for our purposes it would class as such.
Many definitions of a “modality” effectively consider a data stream from a particular
source. For example Lin and Imamiya [13] discuss assessing user experience by
measuring various user attributes – eye gaze, pupil size, hand movements, verbal
reports – and refer to each of these inputs as a modality. Similarly, Sun et al [15]
discuss data fusion across speech and gesture modalities, and Oviatt et al [14] focus
on how people select alternative modalities (i.e. input devices) for interacting with a
computer system. Considering both user input and computer system output, Coutaz et
al [5] consider the combinations of modalities in terms of Complementarity, Assign-
ment, Redundancy and Equivalence. Here, ‘assignment’ means that information has
to be communicated through a particular modality and ‘equivalence’ means that the
same information can be communicated equally effectively through alternative mo-
dalities. Complementarity and redundancy refer to how information is communicated
(using different modalities in complementary ways, or presenting equivalent informa-
tion through multiple modalities).

From a user perspective, much work on modalities has focused on how people in-
tegrate information received through different senses. Wickens and Hollands [17]
present a multiple resource theory that considers cognitive capabilities and limitations
in terms of perceptual channels (vision, hearing, touch, etc.), information form (of
which the two most important for our purposes are lexical and symbolic) and stages
of processing. They highlight limitations on sensory input (that multiple streams of
information cannot be easily received through the same channel, such as eyes or ears,
simultaneously) and on input, processing and action (that competing information in
the same code, verbal or spatial, cannot be easily processed simultaneously). Other
approaches that take a user focus include Barnard et al’s work on Interacting Cogni-
tive Subsystems [7], which considers the transformation and integration of sensory
inputs through central processing to generate action, and Kieras et al’s [12] work on
Executive Process – Interaction Control (EPIC), which models human information
processing in complex, multimodal tasks.

Since our concern is with assessing the usability of interactive systems, the capa-
bilities and constraints on human processing, as well as those on system processing,
have to be accommodated within any definition of a modality. Drawing on the in-
sights from earlier work on modalities, we propose a definition: that a modality is a
temporally based instance of information perceived by a particular sensory channel.
This definition comprises three key elements, time, form and channel, which need
some explanation.

 EMU in the Car: Evaluating Multimodal Usability of a Satellite Navigation System 3

Time refers to the static or dynamic way in which information is presented. This
element is implicit in some other definitions of modality, e.g. in work on data fusion
[15], but is essential for considering how both people and systems can integrate in-
formation from multiple sources over time. We distinguish three temporal forms:
continuous (meaning that information remains available, in fixed form, over an ex-
tended period of time), discrete (information is communicated once, in a transient
form) and dynamic (information is communicated over time, building up the mes-
sage).

Information form is particularly important from a human perspective, in terms of
how people express and comprehend information. Drawing on earlier work, we dis-
tinguish three important information forms: lexical, symbolic (e.g. graphical, with a
meaning that can be inferred) and concrete (e.g. a scene, where no particular interpre-
tation is intended).

For people, the primary sensory channels are visual, acoustic and haptic, though
the set of possible channels might be extended to include olfactory (e.g. [2]). If the
focus were on computer system input, then alternative input channels might be con-
sidered (e.g. keyboard input typically corresponds to lexical, haptic user output).

This definition of a modality, together with the extensible classification of possible
values, is at the heart of the EMU method.

3 Overview of Original EMU Method

The original EMU method [10] drew on earlier task-oriented structured evaluation
methods such as GOMS [4, 11] to develop a process-oriented analysis of user–system
interaction modalities. The central idea behind the approach was that the analyst
should work systematically through an interaction, taking account of the communica-
tions between user and system and also all other environmental interactions occurring
in the situation. For example, when using an in-car navigation (or sat-nav) system,
both user and system are also interacting with the car and the outside world, and the
driver may also be interacting with passengers, which together constitute the envi-
ronment. The core question is then whether all necessary information can be received,
interpreted and integrated (by both user and system).

The analysis of modalities involves considering both input and output – for both
user and system. This separate analysis is necessary to consider whether all informa-
tion transmitted by one of the agents (user or system) is received and correctly inter-
preted by the other. As well as atomic modalities, there may also be composite ones,
where some modalities depend on others; for example, tone of voice may communi-
cate information that augments or contradicts the words spoken, or the colour of a
sign may convey additional information.

Particular attention is paid to modality clashes. These may be physical (e.g. a user
cannot look in multiple places at once, although attention may be caught by appropri-
ately designed visual signals in peripheral vision).They may be temporal, in that multi-
ple information inputs may be difficult to detect or interpret if they occur at the same
time: an example would be the McGurk effect, where acoustic and visual information
are slightly misaligned, making interpretation of speech difficult. One particular case of
clashes that affects people is that, unless trained to do so in particular situations, people

4 A. Blandford et al.

are unable to process two streams of lexical information simultaneously (e.g. reading
while saying something different). They may also experience semantic clashes, of
which an example would be the Stroop effect, where the colour of a word clashes with
the meaning (e.g. the word “blue” written in red text). Hyde [10] also recognised that
some interactions might be difficult for novices, but become easier with practice, such
as changing gear in a car while negotiating a bend.

In the original version of EMU, analysis proceeds through eight stages:

1. The first stage, as in many analytical evaluation methodologies, is to define the
task, or tasks, to be analysed.

2. The modalities used in the interaction are then listed, both descriptively (e.g. sat-
nav gives voice direction) and in terms of the modality (e.g. system expresses
acoustic-lexical-dynamic).

3. The third stage is to describe the user, system and environment in terms that might
have an impact on the usability of the system.

4. A preliminary assessment of any modality issues should be performed.
5. A more complete and systematic analysis is performed, listing all steps of the in-

teraction in terms of expressive and receptive modalities, to deliver a rich account
of that interaction. This may include optionality (indicated by ‘or’) and simultane-
ous communications (indicated by ‘and’); it should also include a note of any pre-
conditions for communication (e.g. that a flashing light is within the visual field).

6. Clashes, as outlined above, are explicitly considered as the next step of analysis.
7. The penultimate step is to explicitly review the modalities used, considering usabil-

ity issues that emerge (e.g. over-dependence on a single modality in a situation
where large volumes of information need to be communicated).

8. Finally, Hyde [10] discusses the writing of the usability report, including conclu-
sions and recommendations.

The method has been applied to the design of several systems, including a robotic
arm for use by disabled people, a ticket machine and a central heating timer.

Two substantive tests of the EMU method have been conducted: one focusing on
the usability and the other on the utility of the approach.

3.1 Usability Evaluation of EMU

The usability of the method was evaluated by teaching it to a group of 28 students
with a background in HCI. They were asked to evaluate two systems using EMU, and
their usability reports were assessed to establish how well they had understood the
concepts and method, and whether they were able to apply it effectively. Following
the test sessions, participants were invited to complete a questionnaire on their per-
ceptions of applying EMU.

Details of this study are reported by Hyde [10]; here we summarise the main points
of that study. The participants’ detailed modality listings were compared to a model
answer, and for most participants only minor errors were identified, indicating a good
grasp of the core concepts. Participants experienced a little more difficulty in identify-
ing modality clashes, and their ability to draw out usability insights from their analy-
sis was variable. In questionnaire responses, most reported that the training had been

 EMU in the Car: Evaluating Multimodal Usability of a Satellite Navigation System 5

clear, though some expressed doubts about their ability to apply the method correctly.
There was, however, an overall concern that the application of the method was too
time-consuming, and that an excessive attention to detail could, at times, divert atten-
tion from the broader usability issues that the analysis should have been highlighting.

The usability of any technique depends heavily on both the prior experience of the
analyst and the quality of the training. As such, any single study will be inconclusive,
as there are many variables that influence the outcome. Overall, the evaluation sug-
gested that the approach could be understood and used effectively in a reasonable
time, but that it should be made more lightweight where possible, without compro-
mising the rigour of the technique.

3.2 Utility Evaluation of EMU

The utility of the method was evaluated by comparing the results of an EMU analysis
against those of other evaluation techniques and also against empirical data. This
study focused on the design of a robotic arm for use by people with limited move-
ment. Seven other analytical evaluation approaches were applied to the same system
(GOMS, Cognitive Walkthrough, Heuristic Evaluation, PUM, CASSM, and Z and
STN representations). Empirical data of the arm in use was also analysed. A full ac-
count of this study is presented by Blandford et al [1]. In brief, the analysis showed
that EMU occupies a useful niche in the repertoire of evaluation techniques. Z and
STN were reasonably effective at supporting the identification of system-related prob-
lems such as the lack of an ‘undo’ facility, redundant operators, and long action se-
quences. GOMS supported the identification of many of the same issues as Z and
STN, plus some concerning the synchronization of user actions with system behav-
iour. HE identified a range of issues, as defined by the particular set of heuristics
applied. Most issues identified through Cognitive Walkthrough and PUM related to
possible user misconceptions when interacting with the system. CASSM covered
some of the same territory as CW and PUM, but also raised issues relating to the
conceptual fit between how to operate the arm controller and what the user would
want to do with the arm ‘in the world’ (e.g. concerning how easily the user could
judge arm movements). EMU also covered some of the same territory as CW and
PUM; in addition, it supported the identification of various issues relating to the mo-
dalities of interaction, as outlined below.

For the robotic arm and its interface, physical considerations were important. In
particular, there was scope for system misinterpretation of user intentions so that the
command issued by the user was not that received by the system. For example, the
gestural input device had options scrolling across the screen, and the user had to nod
when the required option was displayed to select it; this depended on the user’s ability
to synchronise their gesture with the system state. Consistent with the motivation for
developing EMU to consider multimodal issues, this method proved the strongest for
identifying these issues in the interaction.

EMU also proved effective in highlighting issues concerning the dual interactions
with both the arm controller (which was located within the user’s natural visual field)
and the arm itself (which moved within a larger space beyond the controller).

6 A. Blandford et al.

Both the usability and the utility evaluations of EMU, as well as our own experi-
ence of applying it, indicate that it is understandable and useful, but that the original
version of the method was rather cumbersome to use, and therefore needed streamlin-
ing and simplifying.

4 Simplified EMU Method

Following the evaluations, the EMU approach has been simplified in two ways: by
reducing the number of formal stages in an EMU analysis and by de-emphasising the
task analysis of the original step 5 (which typically duplicated findings of other task-
oriented analysis techniques). The approach is still task-based, in that an interaction
sequence, or a space of possible interaction sequences, is used as a basis for analysis,
but the focus is on modalities, possible misinterpretations or breakdowns in commu-
nication, and modality clashes, considering interactions with the environment as well
as with the system that is the focus of analysis.

The first stage is to select and describe a scenario of use, considering both a task
sequence and the environment within which that task takes place. In order to make
analysis efficient, it is important to focus attention on both representative and critical
interaction sequences, but it is not necessary to consider repeated instances of the
same modality configurations. When considering the environment, it is important to
consider variability in the interactions; for example, in an office environment, a tele-
phone might ring at unexpected times and distract the user, while on the road the
environment provides many inputs and distractions that need to be integrated with
information from the sat-nav as discussed below.

The second stage is to perform the modality analysis for selected interaction se-
quences. This involves considering every step, or phase, of the interaction in terms of
five elements:
• System, user and environment modalities, remembering that these commonly occur

in parallel (e.g. system receiving what user is expressing, or vice versa). In this
context, we define the environment to be the broader context within which the user
and system are interacting, including other technologies that are not the particular
focus of the analysis.

• Expressing and receiving, noting which way the information is flowing.
• Sensory channel, considering for now the three possibilities of acoustic, visual and

haptic, while recognising that the set of possible channels might be expanded.
• Information form, considering lexical, symbolic and concrete as the main forms.
• Temporal form, whether continuous, discrete or dynamic.
• The third stage is to consider interaction difficulties. These include:
• Potential mismatches between expressed and received modalities. These might

include breakdowns where information is not received at all (e.g. discrete informa-
tion presented visually, but not observed, or a user talking to a computer that is not
set up to receive acoustic input at that moment). They can also include mismatches
due to timing or interpretation problems, such as the example discussed above of
timing and the gestural input device.

• Modality clashes, as discussed above.

 EMU in the Car: Evaluating Multimodal Usability of a Satellite Navigation System 7

• Integration difficulties of making sense of information received in different mo-
dalities or from different sources. From a system point of view, this might include
data fusion difficulties; from a user perspective, it may include interpretation of in-
formation in the current (environmental) context.

• These stages are illustrated in the following example, where we present an outline
analysis of an in-car navigation (or sat-nav) system.

5 Illustrative Example: In-Car Navigation

In this illustrative example, we base the analysis on a Garmin system, but aim to
provide a description at a level of detail that generalises across various sat-nav sys-
tems, to draw out general points, rather than to focus on the details of implementa-
tion of this particular system. As well as the details of the sat-nav design, there might
also be details concerning the car, how the sat-nav is fitted in the car, what other
technologies (radios, MP3 players, etc.) might be available, whether there are pas-
sengers in the car, etc. The interaction will also be influenced by details of the route
travelled, how familiar the driver is with that route, what signage is available, what
the visibility is, etc.

One of the challenges in defining tasks is considering the level of detail and speci-
ficity with which it should be described. This is particularly so for devices such as sat-
nav systems, which are intended to respond in a rich way according to the context of
use. A very detailed description might yield valuable insights, particularly if details
from an empirical study are also available: this would make it possible to consider
issues such as the timing of instructions, the relationship to road signs, the visibility of
the up-coming junction etc. However, such a rich account might not generalise well to
other (similar but non-identical) situations. Therefore, we develop an abstract descrip-
tion of situations to illustrate a multi-modal analysis.

5.1 Stage 1: Defining the Scenario: Task and Environment

There are usually two key phases to interacting with a sat-nav system: set-up and use.
For the purposes of illustration we consider one set-up task and an abstract in-use
task.

Set-up typically starts with turning the sat-nav system on, then waiting for it to
start up, identify its location and present the main options. The user then has to make
a sequence of selections at the interface to define a destination; the model under con-
sideration is a touch screen device, displaying both graphical icons and text, and with
acoustic output. It would be possible to critique the sequence of action steps, or the
labelling of options in terms of their textual or graphical clarity, but these issues are
well covered by established evaluation approaches such as Cognitive Walkthrough
[16], so for this analysis we check the consistency of interaction patterns across the
sequence of steps and analyse one step in more detail. The environment for set-up
might be the home, car or other starting place; it is unlikely to be changing rapidly,
since the sat-nav should not be programmed while driving, but it might be dark or
cold, or there might be glare from sunshine.

8 A. Blandford et al.

When the sat-nav is in use, at some abstract level we have a steady state, in which
the sat-nav is delivering instructions which the user is following. The external visibil-
ity may be clear or poor (e.g. glare, low visibility or dark); the road conditions may be
more or less demanding (e.g. heavy traffic); and there may be distractions (such as
radio) or supports (such as a passenger to interpret sat-nav information and road
signs). The driver should be interacting with the car controls, but not inputting infor-
mation into the sat-nav.

Fig. 1. Sat-nav menu

5.2 Set-Up: Modalities and Possible Interaction Difficulties

Next, we consider steps 2 and 3 for the first task. To turn the sat-nav on, it is neces-
sary to press and hold the ‘power’ button until the display lights up. At this point,
the user can release the button, and wait while a start-up message is displayed (ac-
companied by a multi-tone bleep); the user is asked to confirm that they agree to
avoid interacting with the device while driving (at which point, the user is expected
to press a soft-key on the display). Every soft-key press is accompanied by both a
visual rendering and an audible ‘beep’. Pressing illegal options (e.g. the ‘up’ key
when it is not possible to scroll up) results in a two-tone beep: the usual ‘button-
press’ beep followed by a lower pitch one. These modalities are summarised in
Table 1; here, the modalities columns represent stage 2 of the EMU analysis and the
‘notes’ column highlights possible difficulties (stage 3). For start-up, we assume
that the user’s attention is focused on the device, and the only likely effects of the
environment are it being cold or dark, or perhaps there being glare on the screen. If
the device is fixed in the car, the user may have difficulty seeing the display while
interacting with it.

 EMU in the Car: Evaluating Multimodal Usability of a Satellite Navigation System 9

Table 1. Interaction modalities and potential difficulties when initialising the sat-nav

Interaction event User modalities System modalities Notes
User presses
power button

Expresses haptic
symbolic continuous

Receives haptic
symbolic continuous

Users may have diffi-
culties locating button
in the dark, or pressing
the button if their
hands are cold or they
are wearing gloves.

System displays
start-up message
and beeps

Receives visual
symbolic continuous
AND acoustic sym-
bolic discrete

Expresses visual
symbolic continuous
AND acoustic sym-
bolic discrete

This is assurance to the
user that the device is
functioning (but also
signifying that it is not
yet ready to be used).

System displays
driving warning
and on-screen
acceptance
button

Receives visual
lexical continuous
AND visual sym-
bolic continuous

Expresses visual
lexical continuous
AND visual sym-
bolic continuous

The user has to recog-
nize the ‘pressability’
of a soft key.

User presses
soft-key to
confirm accep-
tance

Expresses haptic
symbolic discrete

Receives haptic
symbolic discrete

Touch screen may not
accept input if user is
wearing gloves. Screen
may be hard to see if
there is glare or user’s
hand obscures display.

System displays
button ‘de-
pressed’ and
beeps, then
displays main
menu. See Fig 1.

Receives visual
symbolic discrete
AND acoustic sym-
bolic discrete THEN
visual lexical con-
tinuous AND visual
symbolic continuous

Expresses visual
symbolic discrete
AND acoustic sym-
bolic discrete THEN
visual lexical con-
tinuous AND visual
symbolic continuous

The initial system
expressions are redun-
dant, as the user can
determine the effect of
their action by seeing
the menu.

The initial menu is shown in Figure 1. Whereas the earlier steps can be listed suc-
cinctly in a table, this display is much richer, and each element of it can be separately
analysed to assess user interpretations. Here we interleave stages 2 and 3:

• There are five areas which are represented by soft key buttons, each of which has a
lexical label (with or without an additional graphical label, which might be consid-
ered redundant). These are unlikely to be problematic.

• Two other areas (‘settings’ and ‘adjust’) are also clickable, but may not be recog-
nised as such by a novice user.

• Two other areas, the ‘battery’ symbol and the time, display information about the
state of the device, but cannot be interacted with.

• There is an additional area that the user can interact with: the top left-hand corner,
if touched, will take the user to a new display showing “GPS is Off”, together with
a symbolic map of local GPS transmitters and their signal strength. This is unlikely
to be discovered by most users.

10 A. Blandford et al.

• There are other controls (such as the power button) and connectors around the
periphery of the device. In particular, at the back of the device (not shown in Fig-
ure 1) is a hinged, but unlabelled, component: the GPS antenna. If the user raises
this antenna away from the body of the device, this is interpreted by the system as
an instruction to turn GPS on; then a GPS signal indicator appears in the top-left
corner of the screen, and if the user touches this area then a new display shows an
estimate of the current GPS accuracy. The role of the antenna as an ‘on/off’ switch
for the GPS is not immediately apparent, and has to be learnt.

In this section, we have outlined the steps of initializing the device, and highlighted
some possible usability problems that emerge from a consideration of how the user is
likely to interpret system output and also how the system interprets user actions. Dur-
ing set-up, in which interactions with the environment (whether at home or on the
road) are likely to be minimal, we have focused on the user–system interaction. In our
second example, we consider the broader interaction with the environment too, and
possible variations of that situation.

5.3 Driving: Modalities and Possible Interaction Difficulties

While driving, we do not consider the task structure. The set of modalities in play is
relatively static, and the issues concern how those modalities interact with each other.
Stage 2 involves listing the modalities:

• The system receives input from GPS satellites from which it calculates its current
position.

• If there are no passengers in the car, the system is unlikely to be receiving any
other inputs.

• The system expresses visual, lexical and symbolic, dynamic modalities, as illus-
trated in Figure 2. It also gives verbal instructions intermittently (using an acoustic,
lexical, dynamic modality).

• The environment includes the external world, which in turn includes the physical
context (acoustic and visual, concrete, dynamic modalities) and signage (visual,
lexical and symbolic, continuous modalities).

• The environment also includes the car itself, with which the user interacts via steer-
ing wheel, foot pedals and other controls. These controls receive input from the
user via touch, and the user, in turn receives feedback from the controls by haptic
(and also proprioceptive) feedback.

• The environment includes other devices, such as radio and dashboard displays, in
the car. Dashboard displays may take various forms, most commonly visual, lexi-
cal and symbolic, continuous. (We consider the modality of the speedometer, for
example, to be continuous rather than dynamic because it changes relatively
slowly, and the user does not have to monitor it continually.) In some vehicles,
dashboard displays may include acoustic output (lexical or symbolic).

• Radio output (or that of other entertainment systems) is typically acoustic, dy-
namic, and either lexical or symbolic. If the user adjusts the radio, the modalities
include haptic, symbolic, discrete modalities (for making the adjustments) and vis-
ual, symbolic (or lexical), continuous modalities (for monitoring the new system
state).

 EMU in the Car: Evaluating Multimodal Usability of a Satellite Navigation System 11

• The user expresses haptic modalities in interacting with both the vehicle controls
and in-car systems (e.g. the radio). In some situations, the user may also talk – e.g.
if using a car phone.

• The final consideration is of user receptive modalities. The user is likely to be re-
ceiving visual (lexical, symbolic and concrete) dynamic information from the envi-
ronment, visual (lexical and symbolic) and acoustic (lexical) information from the
sat-nav system, acoustic (lexical and symbolic) dynamic information from in-car en-
tertainment systems, visual (lexical and symbolic) continuous information from the
dashboard, and haptic, symbolic dynamic information from the car controls.

Laying out the modalities in this way does not immediately highlight possible
problems, so stage 3 involves systematically working through the modalities and
identifying possible clashes and other modality problems.

First, consider the sat-nav in its environment: it has to synchronise information
from multiple satellites to calculate its current position and relate that to its database
of geographical information. Depending on the location and quality of signal, this
may be achieved with varying degrees of accuracy, which in turn determine the qual-
ity of information the device can deliver. In some situations, poor input information
can result in “Lost satellite signal”, with implications for the user as discussed below.
Some sat-navs also derive information from the car telemetry system, which should
increase the accuracy of available information, but we do not consider this possibility
further.

Fig. 2. An example sat-nav display while driving

Next we consider the sat-nav expressive modalities, and corresponding user recep-
tive modalities. As shown in Figure 2, the device gives rich visual information, in-
cluding a local route map (symbolic), the next instruction (lexical), estimated time of
arrival (lexical) and distance to the next turning point (lexical). It also presents acous-
tic lexical information, intermittently. Systematically assessing these modalities:

12 A. Blandford et al.

• There are possible semantic clashes between acoustic and visual information from
the sat-nav. The sat-nav may give an instruction such as “turn left” when the dis-
play indicates that there is still some distance to go before the turn: this information
needs to be interpreted in the context of the current road situation.

• The acoustic information is, apart from the possible timing issue just noted, a sub-
set of the visual information (in CARE terms, this is a redundant modality). If the
driver only has access to the acoustic information, whether because of the location
of the sat-nav in the car or because their visual attention is taken up elsewhere, the
information available is relatively limited, and the meaning needs to be interpreted
in the context of the external environment.

• In particular, there are possible semantic clashes between acoustic information
from the sat-nav and visual information from the environment. A peculiar attribute
of the auditory information from the particular sat-nav studied is that silence has a
meaning – i.e. to go straight on. For example, a mini-roundabout might be regarded
by the user as a roundabout, but not be represented as such within the system, so
that if the user is expected to go straight across the roundabout then the system
provides no acoustic instruction (which may be particularly confusing if the direc-
tion considered to be “straight” is not immediately obvious to the user). Similarly,
if the main road bends to right or left, but there is a turning that goes straight
ahead, the user may be unsure whether silence from the device means that they
should go straight ahead or they should follow the road round the bend. Additional
information in the environment, such as road signs, may disambiguate some situa-
tions, but add further uncertainty in others. Such semantic clashes have been noted
by others (e.g. [6]).

• If the user is talking, or listening to other lexical information, the dynamic nature
of the acoustic instructions may result in them being missed or misheard.

Focusing just on the visual information from the sat-nav, there are possible diffi-
culties with various elements. The thickness and colour of the line (dependent modali-
ties) that denotes the direction indicates the importance of the route, but obscures the
corresponding information about the roads to be travelled (so visual information about
whether the road to be turned onto is major or minor is absent). The lexical informa-
tion is changing relatively slowly, so it may be possible for the user to glance at these
information items while also attending to the road, but their relatively small size may
make glancing difficult (depending on the location of the sat-nav in the car). The
overlaying of some information (e.g. the white arrow over the “M25” label in Figure
2) and the placing of lexical items (e.g. “ters Crouch” in Figure 2) means that there is
uninformative visual data on the screen. The display shown in Figure 2 is only one of
several alternative displays: we use it for illustration purposes rather than evaluating
all possible information presentation forms on this device.

Turning attention to the acoustic information alone, we note that it has various at-
tributes: content (e.g. “turn left in 0.3 miles”), timing and tone. It has already been
recognized (e.g. [3]) that the timing of instructions relative to the external environ-
ment is critical as the verbal information from the sat-nav needs to be interpreted in
the context of the physical situation: for example, there may be ambiguity over which
turning to take when there are several in quick succession. In EMU, the tone of voice
is considered a dependent modality: for the sat-nav, it always sounds equally

 EMU in the Car: Evaluating Multimodal Usability of a Satellite Navigation System 13

confident and reassuring. This may be at odds with actual degree of certainty (e.g. due
to poor satellite information, or inaccuracy in underlying data), and consequently
mislead the driver. We surmise that many incidents of people following sat-nav direc-
tions while ignoring warning signs in the environment are at least partly accounted for
by the authoritative tone of voice employed in most sat-nav systems.

As noted above, most acoustic information is a replication of visual information.
There are some exceptions, notably information about the state of the device. One
example is implicit information that the driver has failed to follow directions – indi-
cated by the acoustic information “recalculating”. This contrasts with the information
that a navigating passenger would typically provide, which would continue to refer to
the navigation problem (e.g. telling the driver they have just gone the wrong way).
Another example is “lost satellite signal”, which leaves the user unsure how to inter-
pret any subsequent directions, or leaves the user in an unknown place, with insuffi-
cient information to make decisions about where to go at junctions.

This second example illustrates some of the abstract issues that can be identified in
a static analysis, focusing on the available modalities, the information that they com-
municate, and possible clashes and breakdowns in that communication.

6 Conclusions

Multimodal and ubiquitous systems are becoming widespread. Established analytical
evaluation techniques are not well adapted to identifying the usability issues raised by
the use of alternative or multiple modalities, or of assessing how systems are used
within their broader environments. EMU is an approach that can complement more
traditional evaluation techniques by focusing attention on information flows around
an interactive system within its broader environment which will, itself, typically
transmit and receive information that may augment, complement or interfere with that
which passes between user and device.

We have illustrated the application of EMU to identifying some of the limitations
of an exemplar sat-nav system. A satellite navigation system was chosen for this
study because: the interaction between user and system is multimodal; the use of the
system only makes sense within the broader environmental context (of the geographi-
cal region being traversed); and the system is safety-critical, making usability and
user experience particularly important.

EMU focuses attention on the modalities of communications between user and sys-
tem within the context of use. In particular, clashes between modalities, integration of
information, and possible lost information can be identified through an EMU analysis.
Earlier studies have shown that EMU is learnable [10] and that it occupies a particular
niche within the space of analytical evaluation methods [1]. However, the initial study
of EMU in use highlighted the fact that the process of conducting an analysis was
unduly laborious. In this paper, we have presented a more lightweight approach, such
that the costs of analysis are more appropriate to the benefits gained through conduct-
ing that analysis.

14 A. Blandford et al.

Acknowledgements

The development of the original EMU method was funded by a studentship from
Middlesex University for Joanne Hyde. Recent work has been funded by EPSRC
grants GR/S67494 and GR/S67500.

References

1. Blandford, A., Hyde, J.K., Green, T.R.G., Connell, I.: Scoping Usability Evaluation Meth-
ods: A Case Study. Human Computer Interaction Journal (to appear)

2. Brewster, S., McGookin, D., Miller, C.: Olfoto: designing a smell-based interaction. In:
Proc. CHI 2006, pp. 653–662. ACM, New York (2006)

3. Burnett, G.E.: Usable vehicle navigation systems: Are we there yet? In: Vehicle Electronic
Systems 2000 - European conference and exhibition, ERA Technology Ltd, June 29-30,
2000, pp. 3.1.1-3.1.11 (2000)

4. Card, S.K., Moran, T.P., Newell, A.: The Psychology of Human Computer Interaction.
Lawrence Erlbaum, Hillsdale (1983)

5. Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., Young., R.: Four easy pieces for
assessing the usability of multimodal interaction: the CARE properties. In: Nordby, K.,
Helmersen, P., Gilmore, D.J., Arnesen, S. (eds.) Human-Computer Interaction: Interact
1995, pp. 115–120. Chapman and Hall, Boca Raton (1995)

6. Curzon, P., Blandford, A., Butterworth, R., Bhogal, R.: Interaction Design Issues for Car
Navigation Systems. In: Sharp, Chalk, LePeuple, Rosbottom (eds.) Proc. HCI 2002 (short
paper), vol. 2, pp. 38–41. BCS (2002)

7. Duke, D.J., Barnard, P.J., Duce, D.A., May, J.: Syndetic Modelling. Human-Computer In-
teraction 13, 337–394 (1998)

8. Elting, C., Zwickel, J., Malaka, R.: Device-dependant modality selection for user-
interfaces: an empirical study. In: Proc. IUI 2002, pp. 55–62. ACM, New York (2002)

9. Fink, J., Kobsa, A.: Adaptable and Adaptive Information Provision for All Users, Including
Disabled and Elderly People. New Review of Hypermedia and Multimedia 4, 163–188 (1998)

10. Hyde, J.K.: Multi-Modal Usability Evaluation. PhD thesis. Middlesex University (2001)
11. John, B., Kieras, D.E.: Using GOMS for user interface design and evaluation: which tech-

nique? ACM ToCHI 3.4, 287–319 (1996)
12. Kieras, D.E., Wood, S.D., Meyer, D.E.: Predictive Engineering Models Based on the EPIC

Architecture for a Multimodal High-Performance Human-Computer Interaction Task.
ACM Trans. Computer–Human Interaction 4, 230–275 (1997)

13. Lin, T., Imamiya, A.: Evaluating usability based on multimodal information: an empirical
study. In: Proceedings of the 8th international Conference on Multimodal interfaces, ICMI
2006, Banff, Alberta, Canada, November 02 - 04, 2006, pp. 364–371. ACM, New York (2006)

14. Oviatt, S., Coulston, R., Lunsford, R.: When do we interact multimodally? Cognitive load
and multimodal communication patterns. In: Proc. ACM International Conference on Mul-
timodal Interfaces (ICMI), pp. 129–136 (2004)

15. Sun, Y., Chen, F., Shi, Y., Chung, V.: A novel method for multi-sensory data fusion in
multimodal human computer interaction. In: Proc. OZCHI 2006, vol. 206, pp. 401–404.
ACM, New York (2006)

16. Wharton, C., Rieman, J., Lewis, C., Polson, P.: The cognitive walkthrough method: A
practitioner’s guide. In: Nielsen, J., Mack, R. (eds.) Usability inspection methods, pp. 105–
140. John Wiley, New York (1994)

17. Wickens, C.D., Hollands, J.G.: Engineering Psychology and Human Performance, 3rd edn.
Prentice Hall International, London (2000)

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 15–28, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Comparing Mixed Interactive Systems
for Navigating 3D Environments in Museums

Emmanuel Dubois, Cédric Bach, and Philippe Truillet

University of Toulouse, IRIT-IHCS, 31 062 Toulouse Cedex 9, France
{Emmanuel.Dubois, Cedric.Bach, Philippe.Truillet}@irit.fr

Abstract. This work aims at developing appropriate Mixed Interaction Systems
(MIS) for navigating 3D environments in a science centre context. Due to the
wide range and multi-disciplinary design aspects to consider in this context and
the lack of expertise in terms of MIS and public context evaluation, designing
and evaluating MIS is a complex task. Based on an integrated development
process, which combines a design model and a user-testing, this paper presents
the outcomes of the comparison of two MIS in terms of performance and satis-
faction.

Keywords: User-centered design, user experiment, mixed interactive systems,
augmented reality, tangible UI, user-testing, design model.

1 Introduction

Technological and computational developments have pushed HCI beyond the tradi-
tional mouse / keyboard configuration, towards innovative and multiple display sys-
tems, multimodal interfaces, virtual and mixed reality and other “off-the-desktop”
interaction techniques. In the context of 3D environments [4], these evolutions con-
tribute to a better support for navigating, exploring and visualizing 3D environments.
For the output, visualization techniques [27] or 3D displays are developed, such as
Head-Mounted Display, large/spherical screens. For the input, dedicated 3D devices
such as the Cubic Mouse [10] are developed, as well as “pen and tablets” techniques
[21], advanced forms of tracking mechanisms, speech and gesture-based interaction
[24], etc.

Faced with a museographic theme involving 3D representation of data, we wish to
explore and take advantages of these evolutions for creating an interactive experience:
we are seeking for a deeper involvement of the visitors during the visit. In this con-
text, designing and evaluating the most appropriate interaction technique is not obvi-
ous because considerations from different domains must be merged.

In terms of design, 3D environment and science centre related aspects need to co-
exist. Among the large collection of advances in 3D user interface (UI) two interac-
tion styles seem to be particularly appropriate for public experiences, because they
increase the system affordance. The first interaction style, Modal behavior, promotes
the use of a different interaction artifact for each available command: “pen and tab-
lets” paradigms allow the clear representation on the tablet of widget-button repre-
senting commands. The second interaction style, the level of input/output coupling

16 E. Dubois, C. Bach, and P. Truillet

reinforces the integration of the interaction artifacts with the targeted objects of inter-
action: the Cubic Mouse [10] for example literally places visualized data in the user’s
hands. From the science centre perspective, Mixed Interactive Systems (MIS) such
as tangible, augmented and mixed reality UI should be favored: indeed, they are more
easily integrated in the museum architecture and adapted to different themes and they
are able to hide technological devices, thus promoting the magical dimension of the
experience and replacing objects at the centre of the user’s visit of the science centre
[26]. However, it is difficult to maintain the integration of 3D UI and science centre
considerations all along a development process based on the most usual ad hoc or
prototyping approaches.

In terms of evaluation, experience acquired from the design and evaluation of 3D
UI in the literature often relies on niche applications in which performance is preva-
lent; little place is left to 3D UI satisfaction analysis as defined in [16]. However
satisfaction is becoming crucial when the task to perform is not clearly associated
with a user’s goal but allows creativity and exploration such as in science centre. In
addition, “best practices” or expertise for supporting the evaluation of such interactive
techniques do not exist yet.

Our goal is thus to compare mixed interaction techniques for navigating 3D envi-
ronment in a science centre context: each of them combines one of the two interaction
styles inferred by 3D UI experiences (modal behavior and input/output coupling) and
science centre constraints. Our approach relies on an integrated development process
involving 3 steps: 1) use of an existing design model to generate interactive solutions
and ensure that 3D UI and science centre considerations are well combined, 2) im-
plementation of the techniques on the basis of the design specifications, and 3) user
testing including an assessment of performance and satisfaction aspects.

2 Mouse-Based and Mixed Interaction Techniques Design

Due to experimental requirements, a 3D interactive application that is robust, easy to
understand and offering software API is required. We choose to use the part of the
Google Earth (GE) free application [11] supporting the navigation onto satellite pic-
tures of the Earth from a modifiable point of view. This application mimics our tar-
geted museum application seeking to navigate over the Earth at different era. Next
sections present how the set of selected commands are accessible with the mouse and
the mixed interaction techniques that we developed.

2.1 GE Manipulation with a Mouse

A first set of commands is used to support translations of the displayed image of the
earth: the “go to” tasks. For example, in order to visualize a region of the globe situ-
ated to the left of the current screen, one must press the left mouse button, moves the
mouse to the right and releases the mouse button: this results in a rotation of the globe
from left to right (Figure 1, top). Likewise, translations of the mouse to the left, top or
bottom result in displaying globe areas placed on the right, bottom or top of the cur-
rent view, respectively. In addition, using the mouse wheel enables the user to modify
the altitude of the birds-eye view: this corresponds to the definition of the zoom level

Comparing Mixed Interactive Systems for Navigating 3D Environments in Museums 17

on the images. The second set of commands considered in this experiment results in
rotations of the displayed images: the “turn around” tasks. If the mouse cursor is in
the upper part of the displayed globe area, pressing the mouse-wheel and then moving
the mouse cursor horizontally to the left (resp. right), results in a counter-clockwise
(resp. clockwise) rotation of the globe area as shown in Figure 1 (bottom): this corre-
sponds to a modification of the orientation of the North direction, and this behavior is
inverted if the mouse cursor is in the lower part of the screen. Finally pressing the
scroll wheel and then vertically moving it down (resp. up), results in a diminution
(resp. increase) of the angle between the point of view and the globe surface tangent
(see Figure 1, bottom): this corresponds to a modification of the viewpoint, the “tilt”
tasks.

Fig. 1. Effect on GE of mouse translations while pressing left button (top) or wheel mouse
(bottom)

In addition to the mouse-based interaction, we developed two mixed interaction
techniques with the same basic commands. In order to support the combination of
design considerations implied by 3D UI and science centre contexts, their design is
based on the use of a design model specific to Mixed Interaction Techniques. We first
briefly motivate the need for a specific design tool before using it for presenting the
implemented techniques.

2.2 Design Approach

As already mentioned, science centre needs play in favor of mixed interaction tech-
niques, i.e. interactive techniques involving a set of physical artifacts, devices, and
digital resources. Such interaction techniques induce a multi-faceted interaction set-
ting. To facilitate the reasoning about their design, physical artifacts have to be clearly
identified and characterized, links between physical and digital resources must be
expressed and the user’s interaction within this complex interactive environment
requires a clear description. Such a design-support should include task analysis con-
siderations, domain object and dialog description, and should take into account the
presence of physical objects.

However, until recently, mixed interactive system developments mostly consisted
in the production of ad hoc prototypes, based on the use of new technologies. In order
to face the rapid development of these systems, different design approaches emerge.
TAC paradigm [22] and MCPrd [17] architecture describe the elements required in
Tangible User Interfaces. More recently, some notations have been developed to sup-
port the exploration of Mixed Systems design space [6, 7, 23]: they are based on the
identification of artifacts, entities, characteristics and tools relevant to a mixed

18 E. Dubois, C. Bach, and P. Truillet

system. Other work in mixed interactive systems study the link between design and
implementation steps [15,20]. Among these design supports we choose to use the
ASUR model because it offers a large set of characteristics [7], structured in an in-
formation flow oriented framework [8] useful for capturing the fundamental roles of
the different artifacts in the mixed interaction. An ASUR model constitutes a formal
and abstract specification of the interaction technique, which can be iteratively refined
up to the identification of the technological devices to use. ASUR also provides a
graphical editor based on an ASUR meta-model, thus allowing model transformations
and interweaving with other models [5]. The next sections adopt this model to present
the mixed interaction techniques we developed and how they incorporate interaction
styles suggested by 3D UI experiences.

2.3 GE-Stick

The first interaction technique we developed is the Google-Earth Stick (GE-Stick).
The goal of this first interaction technique is to clearly separate the different available
commands: it is thus using the first interaction style identified in introduction: modal
behavior. Using ASUR to reason about the design of a possible solution, lead to the
identification of one distinguishable ASUR participating entity for each command. In
the ASUR framework, participating entities can be of four different types: adapters (A
component) bridging the gap between the computer system and the real world, digital
resources managed by the computer system (S components), user interacting with the
system, or physical artifacts of the real world (R components). Given our goal to
design mixed interaction techniques for 3D navigation support, physical participating
entities must be used to materialize the ten navigation commands: the ASUR model
should thus involve ten physical entities. Inspired from the “Tangible Geospace” [25],
the design solution described at this level could result in the use of ten different bricks
with discriminating forms or colors. In the context of public spaces, too many artifacts
may be hard to manage, given the risk of losing one of the ten bricks, and conflicts
with classical ergonomics recommendations about capacity of short term memory (7
± 2 chunks [18]).

To reduce this risk, the final ASUR model, presented in Figure 2, identifies only
seven physical artifacts (Rtool components): six of them are used to materialize the four
“cardinal” translations and two others represent the two directions for modifying the
orientation of the point of view on the surface of the Earth; they are physically
grouped together (double-line ASUR relationship) on the seventh artifact (Rtool com-
ponent, Board) handled by the user (double-line ASUR relationship). To activate the
command associated to one of them, a sensor (Ain component, RFID reader) is re-
quired to identify the physical artifact, when coming close to it (double-line ASUR
relationship). The type of sensor can be further refined in the ASUR model by the
“medium” property of the interaction channels 2x: it denotes the mean by which the
information is transmitted and in this case the final model specifies radio-frequency
on this channel. The command to apply is then transmitted along channel 5 to the
database containing satellite images of Google Earth, a digital entity (Sobject compo-
nent, Google Map).

The four remaining commands are encoded through two adapters (Ain components,
Slider and Potentiometer), i.e. captors directly linked to the computer system. They
are used to sense changes to apply to the orientation to the north and the altitude.

Comparing Mixed Interactive Systems for Navigating 3D Environments in Museums 19

Finally, an output adaptor (component Aout, Video projector) is required to provide the
user with information in a visual way as specified by the “medium” of the channel 9.
Every channel could be further refined by additional ASUR characteristics. This is
however not relevant to the present work but is the purpose of [9] in which a complete
and detailed modeling is presented.

Fig. 2. ASUR modeling of the GE-Stick and actions a user can perform on it

Concretely, this interaction technique and its use are illustrated in Figure 2. It con-
sists of a prop held in the user’s hand and a board representing a compass rose. Six
positions on the board are distinguishable: they correspond to the six physical partici-
pating entities identified in ASUR (Rtool component) and represent the six directions in
which the Earth can be moved. These areas are equipped with a RF-ID tag. The lower
part of the prop is equipped with a RF-ID reader: it corresponds to the sensor (the first
Ain component) and the user has to bring the prop close to one of the six areas to de-
tect the RF-ID tag and trigger the corresponding event.

The two remaining adapters (Ain components) identified to sense the changes to ap-
ply to the north orientation and the altitude are instantiated through two devices fixed
on the prop: one is a potentiometer and can be turned with the thumb and forefinger to
modify the orientation of the North axis; the second is a slider and can be slid
up/down to change the zoom. In the specific and predefined “neutral zone”, these
buttons have no effect. Phidget sensors [19] are used for the implementation.

2.4 GE-Steering Board (GE-SB)

The second interaction technique developed is the Google-Earth Steering Board (GE-
SB). The primary goal of this technique is to increase the coupling between the input

20 E. Dubois, C. Bach, and P. Truillet

interaction artifact and the navigated data (interaction style: input / output coupling).
This coupling is reinforced to promote the homogeneity along three dimensions: rep-
resentations, scales and behaviors.

Expressing the representation with the ASUR design model implies that one
physical participating entity (Rtool component, Steering Board) must represent the
manipulated data: Google Earth satellite images (Sobject component, Google Map). The
ASUR “representation link” fulfills this role and is expressed with the dashed arrow
between a participating entity and its representation. The physical configuration of the
physical artifact is identified by an adapter for input (Ain component, Camera), which
is responsible for transmitting (channel 3) the command to apply onto the satellite
images. To reinforce the homogeneity in terms of behavior, the ASUR characteristic
“representation” is used to define the coding scheme used to encode the information.
In channel 1, it must be “a set of discriminant and specifiable physical configurations
of the artifact”: the user will have to move this physical artifact (channel 1) to move
away or in one direction, modify the orientation, etc. To strengthen the homogeneity
in terms of scaling, the ASUR characteristic “modification method” of channel 2
specifies “hands/arm motions”: the user will have to produce hand-gesture and not
only small motions such as those required to move a mouse or joystick.

Finally, in a public context, wireless technologies and solutions that avoid any con-
tact of the user with an electronic device are probably more suitable, at least to limit
the risk of theft. This restriction is expressed in the “medium” characteristic of chan-
nel 2: the mean by which this information is transmitted will be “visual”. Conse-
quently, the “sensing mechanism” of this channel must be a “CCD and a recognition”
algorithm. Characteristics of participating entities and interaction channels are sum-
marized in Figure 3 and a detailed presentation can be found in [9].

Fig. 3. ASUR modeling of the GE-SB and board motions that are recognizable by the system

Comparing Mixed Interactive Systems for Navigating 3D Environments in Museums 21

Concretely, this interaction technique and its use are illustrated in Figure 3. A
physical board is required and corresponds to the ASUR Rtool component. It represents
the position of the point of view on the images. Moving the board results in moving
the point of view on the satellite pictures accordingly: these motions are detected via
the ASUR adapter identified (Ain component). Technically the GE-SB involves video-
based tracking software [1] to localize the position of the reverse side of the board in
the space. As illustrated in Figure 6 a camera for the detection of the board is posi-
tioned in front of the user. A neutral zone also exists in which only rotations can be
triggered.

The model-based design approach has been enriched with an inspection based on
Ergonomic Criteria dedicated to Virtual Environment [2]. Achieved by a MIS usabil-
ity expert, it was used to detect problems that could have jeopardized user-testing and
complicated results interpretation.

3 Experimental Settings

To compare the two mixed interaction techniques previously designed, an evaluation
was carried out. It is based on user-testing and includes performance / satisfaction
considerations. This experiment is a prospective attempt for comparing the effect of
mixed interaction techniques in science centre contexts. In order to have sufficient
control, it takes place in a usability lab and involved users who received “higher edu-
cation” because, according to statistics of our science centre partner, they represent
more than 60% of the visitors. Finally, the mouse is the reference technique, because
it takes advantage of the user’s habits and its use with Google Earth is feasible.

3.1 Users and Material

13 users were involved in this experiment, 8 males and 5 females (29.6 years old,
SD=7.3). All of them have obtained a graduation degree and are well familiarized
with mouse-based interaction with a computer but not especially accustomed to MIS
and 3D UI. The version of Google Earth we used is 4.0.2416 and it was retro-
projected on a screen 2.1 m wide, 1.5 m high (2.56 m in diagonal). Users stood in
front of the screen, at approximately 2 m. A table was placed between them and the
screen at 1.9 m. An area was defined on the table to represent the zone in which to
manipulate the mouse; it also represented a vertical projection, onto the table, of the
“neutral zone” defined for the GE-SB: this area is 0.3x0.25 m. A camcorder captured
data displayed on the screen and the user’s interaction (see Figure 4). On the other
side of the screen, two observers measured the duration of each task accomplished by
the user and took notes about misuses of the interaction techniques.

3.2 Procedure

Each user was involved in a 3 phases process: training, test and post-test interview.
During the training phase, the goal was to teach to the user how to perform the ten
different Google Earth commands involved in the experiment: six translations, includ-
ing the zoom in and out, and 4 rotations. Users were informed that semi-automated

22 E. Dubois, C. Bach, and P. Truillet

zooming and moving with mouse are prohibited by experiment settings. Each user
had to go through this training with the mouse first: it is the technique of our control
group; users were then trained on the GE-Stick and GE-SB in a counterbalanced or-
der. Finally, using the mouse only, cities involved in the measurement phase were
visited (Paris, NY, Nouméa), to be sure that users could found these places during the
test. Users had no time limit and were asked to confirm whenever they thought they
perfectly understood and controlled how to trigger the commands before starting the
test phase.

During the test phase, users were informed that the time to perform the following
tasks would be now measured. This measurement phase was based on a predefined
scenario. The scenario was made of seven steps involving the ten Google Earth com-
mands previously taught to the user. Users were all starting from Paris and the first
step asked the user to “reach New York (NY) at an altitude of 400 m”. The following
steps of the scenario were: tilt the Earth to observe the horizon, do the tour of the
island, come back at the vertical of the Earth, go to Nouméa, tilt the Earth until ob-
serving the horizon and finally do the tour of Nouméa. This scenario thus includes
three different types of tasks, namely “Go to”, “Tilt” and “Turn around”, each of them
being performed twice during the scenario, in NY then in Nouméa. Each step of the
scenario was stated by the experimenter who explicitly mentioned when to start carry-
ing out each step. Each user had to perform the scenario three times, with the three
different interaction techniques, in the same order taught in the training phase. For
each scenario, 26 measures have been recorded: 13 users performed twice each type
of tasks (“go to”, “tilt”, “turn around”)

During the post-test interview, users were questioned about their qualitative ex-
perience with the applications, through a semi-guided interview.

4 Assessment Results

All experimental tasks were successfully performed by subjects except seven failures
in the category of task “Turn around”. All users had successfully achieved this task,
with every interaction technique during the training phase but four failures were due
to two users when using the mouse and three failures were due to two other users
using the GE-SB. Most salient results are bolded in the following text.

4.1 Satisfaction Analysis

The semi-guided interview of the post-test phase was used to determine, the preferred
interaction technique, their feelings about the discovery process, the three strongest
and weakest points of each techniques, the most efficient and the most constraining
techniques, and finally the physical workload. In this paper, we focus on the users’
preferred interaction technique.

To identify preferred interaction technique, participants were asked to rank interac-
tion techniques by preference order. A proportional score (range 0 to 20) was then
computed by summing the scores given by the users to each interaction technique.
According to this analysis the preferred interaction technique is the GE-SB (12.14)
followed by the mouse (10.71) and GE-Stick (7.14). Preliminary interview analyses
indicate that users prefer the GE-SB because it allows a good level of presence and a

Comparing Mixed Interactive Systems for Navigating 3D Environments in Museums 23

feeling of omnipotence. Preference for the mouse seemed to be based on familiarity
arising from everyday uses (habit). Given that the input/output coupling interaction
style has been embedded in the GE-SB design, this result highlights, in the present
settings, the impact of the level of coupling of the interaction artifacts with the tar-
geted interaction space on the user’s interaction with a MIS.

4.2 Performance Analysis

4.2.1 Overall Performance Analysis
Means (M) and standard deviations (SD) of the overall durations of use (including the
7 steps of the scenario) are: mouse (M=5’19; SD=2’31); GE-Stick (M=6’48;
SD=0’53); GE-SB (M=7’23; SD=2’13).

An analysis of variance (ANOVA) was performed. This analysis shows an effect
[F (2,270)=3.0567; p=0.0487] of the interaction technique used to perform the sce-
nario. Three complementary paired Student-Test reveals a significant difference
between mouse and mixed interaction techniques (GE-SB vs. Mouse: p<0.001; GE-
Stick vs. Mouse p=0.0259) but no significant effect between the mixed interaction
techniques (GE-SB vs. GE-Stick: p=0.1887). These results show a better global per-
formance of the control group using a mouse compared to MIS. It also illustrates that
the performance order, based on the duration of use, is different from the preferred
interaction technique order, i.e. user’s satisfaction. This result highlights that in MIS
context, like in traditional HCI context [16], performance and satisfaction are not
necessarily correlated: as mentioned by [14], performing a composite evaluation
(multi methods/dimensions/domains) is required to assess the quality of MIS.

Another straight performance result arises from the comparison of the SD of each
interaction technique. The SD represents the level of variability between users’ per-
formance when interacting with an interaction technique: the smaller the variability,
the more consistent the interaction technique in terms of stability of use among differ-
ent users. Unexpectedly, it appears in the studied sample that the SD of the two mixed
interaction techniques are equal (GE-SB) or smaller (GE-Stick) than the SD of the
mouse (control group). Given that modal behavior interaction style has been embed-
ded in the design of the GE-Stick, this result draws attention, in the present settings,
to the interest of the strong differentiation of each command on the user’s interac-
tion with a MIS. More generally, stability of use is one of the major factors of
transferability of an interaction technique to public spaces: indeed it positively affects
consistency of use. This interesting result thus suggests that it is worth further inves-
tigating mixed interaction techniques in science centre context.

In order to better understand the differences among the interaction technique, per-
formance results have been considered for each type of task.

4.2.2 Performance Analysis of “Go to” Tasks
A Multivariate Analysis of Variance (MANOVA) was performed to identify (1) the
most efficient interaction technique to perform this task and (2) the difference be-
tween the realization of the first occurrence of the task (“Go from Paris to NY”) and
the second (“Go from NY to Nouméa”). Effects of the interaction technique [F
(2,72)=117.87; p=1.95e-23], of the occurrence [F (1,72)=4.60; p=0.035] and of the
interaction between this two main factors [F (2,72)=3.56; p=0.033] were revealed.

24 E. Dubois, C. Bach, and P. Truillet

Table 1. Duration of realization of the task
“Go to”

IT Go to (s) NY Nouméa
 M. 51.31 60.00

Mouse Var. 86.23 233.34
 M. 144.23 123.46

GE-SB Var. 1122.52 145.93
 M. 160.54 138.23

GE-Stick Var. 1206.27 545.52
Mean M. 118.69 107.23

Fig. 4. Picture of the settings in front of the
screen

Table 1 summarizes the mean (M) and variance (Var) of the performance of reali-

zation of the task “Go to” with each of the three techniques. Similarly to the overall
performance analysis, the better performance is accomplished with the mouse.
However, we noticed during the experiment that, with mouse use, the speed of the
image translations was directly correlated with the speed of the user’s movement of
the mouse, while with the two other interaction techniques, the speed of the image
translations is constant, even when user’s movement are quicker or larger.

More interestingly, the effect of the occurrence shows that the control group spent
more time to reach Nouméa from NY (2nd occurrence of the type of task “Go to”) than
to reach New York from Paris (1st occurrence): this is coherent because the distance
between New York and Nouméa is twice the distance between Paris and New York.
However, using the MIS, GE-SB or GE-Stick, it is more efficient to reach Nouméa
(2nd occurrence) than New York (1st occurrence) (see table 1). In addition when con-
sidering the mean of the durations required to performed the “Go to” tasks with each
interaction techniques separately, the mean of the second occurrence (going from NY
to Nouméa) is significantly lower when using the MIS: GE-SB (p=0.026) and GE-
Stick (p=0.032). This suggests that the participants continue to learn how to use MIS
between Paris and New York and the result of this learning is the better performance
to reach Nouméa from New York despite the double length of the trip. This result
shows that along the experiment, users improve their experience with the MIS,
which contribute to ensure a deeper involvement of the user.

4.2.3 Performance Analysis of “Tilt” Tasks
Another MANOVA was computed to explore the effects of “interaction technique”
and “occurrence of the task” (NY vs. Nouméa) on “Tilt” tasks type. The results do not
show any significant differences between interaction techniques [F (2,108)=0.868;
p=0.422], occurrences of the task [F (2,108)=1.54; p=0.219] and interaction between
these two factors [F (4,108)=1.44; p=0.224]. These interaction techniques thus appear
to be equivalent to perform the “Tilt” task and are not especially associated with a
learning effect (as opposed to the “Go to” task). However, one can note in Table 2
(left) an important and repeated dispersion of the users’ performances on “Tilt” tasks,
with the mouse: it confirms the overall stability of MIS identified in 4.2.1

Comparing Mixed Interactive Systems for Navigating 3D Environments in Museums 25

Table 2. Duration of realization of the task "Tilt" (left) and "Turn around" (right)

IT

Time
to (s)

Tilt
(NY)

Untilt
(NY)

Tilt
Nouméa

Total IT

Turn
(s) NY Nouméa Total

 M. 23.46 8.46 7.23 13.05 M. 64.92 53.69 59.31

Mouse
Var.

2127.7
7

56.43
15.35 750.47

Mouse
Var. 4099.23 2864.24

3375.26

 M. 19.92 17.38 16.77 18.02 M. 60.38 24.61 42.50
GE-SB Var. 27.24 49.09 104.52 59.02 GE-SB Var. 7722.75 770.92 4409.62

 M. 14.92 13.31 19.77 16.00 M. 19.23 13.15 16.19
GE-Stick Var. 12.41 6.23 130.02 54.68 GE-Stick Var. 294.36 26.14 163.44

4.2.4 Performance Analysis of “Turn Around” Tasks
A last MANOVA was computed to explore the effects of “interaction technique” and
“occurrence of the task” (NY vs. Nouméa) on “Turn around” tasks type. No signifi-
cant effect can be observed regarding the occurrence of the task [F (1.72)=2.32;
p=0.132] and the interaction between these factors [F (2.72)=0.622; p=0.539]: as
opposed to the “Go to” task, no learning effect can be observed. More interestingly, a
significant effect of the interaction technique exists [F (2.72)=4.669; p=0.012]. Three
complementary student tests established that the GE-Stick is significantly better to
achieve the “Turn around” task than the mouse (p<0.001) and GE-SB (p=0.029)
(see Table 2): again this can be associated with the modal behavior interaction style,
embedded in the GE-Stick. No significant difference is identified between the mouse
and the GE-SB (p=0.168).

5 Discussion and Future Works

This paper presents a comparison of two mixed interaction techniques, useful for
navigating 3D environments in a science centre context. Given the complex nature of
this kind of environment and the relative lack of expertise in the evaluation of mixed
interactive system, methodological and empirical results are required [3]. To address
this issue, we selected a concrete use case, navigating Google Earth, and adopted a
development process based on a design model and a user experiment.

The use of a design model dedicated to Mixed Interactive System (MIS), illustrates
how different design considerations can be formally expressed in this model. We par-
ticularly focused on how to express two relevant 3D UI interaction styles (“modal
behavior” and “input/output coupling”). Subsequently, additional science centre con-
straints and considerations have been introduced in the model, and final adjustments
lead to the elicitation of two design solution of MIS, adapted to the considered settings.

The user testing included performance and satisfaction aspects and aimed at com-
paring three interaction techniques (IT): the two MIS, implemented on the basis of the
model-based specifications and a mouse-based IT (control-group). The satisfaction
analysis was based on a post-test interview and the performance analysis was based
on 26 measures for each task supported by an IT. The rankings of these three IT ac-
cording to the user preferences clearly differs from the ranking established according
to the performance measurements. The first outcomes of this comparison thus confirm

26 E. Dubois, C. Bach, and P. Truillet

that satisfaction and performance are two complementary aspects to take into consid-
erations when designing MIS for science centre contexts. Although the overall per-
formance evaluation highlighted that the mouse is more efficient than the two MIS we
developed, results obtain in these experimental settings also reveal that our MIS pro-
totypes could well be transferred to public spaces: their overall inter-user performance
stability is equal or better than the well known mouse and the user’s appropriation of
the MIS is significantly established on given tasks (“Go to” tasks type). These ele-
ments will contribute to reinforce the visitor’s involvement in a science centre offer-
ing such interactive experience. Concerning the two interaction styles, each of them
embedded in the design of one of the MIS, results show the importance of the “input /
output coupling”, especially on the satisfaction aspect of the evaluation. On the other
hand the “modal behavior”, by differentiating the commands, produces a positive
implication on user involved in tasks that are hard to understand or perform, such as
the “Turn around” tasks type.

Following this evaluation, problems with these MIS have also been identified.
First, grasping the GE-Stick was not very easy because it was quite thick: rearranging
the sensors or using the Nintendo Wii-mote for example will improve this limitation.
Secondly, the speed of the translation was limited with the MIS, but a new Google
Earth API will avoid this software limitation and allow the implementation of accel-
eration factors. Thirdly, finding the neutral area of the GE-SB was not immediate:
solutions to this must be found.

Following this prospective work in terms of comparison of MIS, research perspec-
tives have been identified. Firstly, the interaction styles considered raise the opportu-
nity to refine the notion of interaction continuity. Indeed, each of them have a positive
impact on different interaction dimensions either linked to performance or satisfac-
tion: the input/output coupling present in the GE-SB increases the scales compatibil-
ity between the input and output, and the significances of artifacts involved; the
modal behavior present in the GE-Stick increases the consistency between user and
MIS behavior. These three dimensions might constitute three new relevant criteria
for defining the notion of continuity in the context of MIS. Such criteria might even
constitute a bridge to articulate HCI practices with furniture designer. Secondly, the
design-test process adopted here establishes so far only to form of links between the
models and the evaluation. The first link is based on the museum requirements (inter-
action styles and use of MIS): they are at the basis of the design models developed
and they rationalize the experimental setting established to compare the techniques.
The second link is in favor of an effective reengineering of interaction techniques:
interesting results raised during an evaluation (e.g. “turn around” is quicker with the
GE-Stick than with the GE-SB) can easily be linked to some parts of the ASUR model
(e.g. a user, the digital entity Google Map, an adapter for input and the three chan-
nels connecting them); an iteration on the design-test process may thus bring a new
solution build around this part of the model that has a positive impact on the interac-
tion; alternatively, issues raised during the test can also be associated with specific
parts of the model and constitute the main focus of the design of the next design itera-
tion, while keeping other design considerations or constraints expressed elsewhere in
the model in the first iterations. These kinds of links and impacts have to be further
explored and could be further reinforced by the direct expression of a recommenda-
tion and criteria in terms of the design model: predictive evaluation would thus be

Comparing Mixed Interactive Systems for Navigating 3D Environments in Museums 27

supported by the design model. This anchor between design and evaluation also con-
stitutes a promising basis to the deployment of replay based design steps. Finally,
although we constituted our user sample with great care, it appears to be very hard to
control its homogeneity because it involves individual capabilities of 3D navigation:
in complement to [12] and [13], identifying difficulties, rules and method for support-
ing the recruitment process of participants, seems crucial.

To conclude, the work we reported has
been in this paper could be considered as
the outcomes of a first increment of the
development of MIS in a museum context.
This context was useful to establish a field
of constraints and to experiment the de-
sign-test process in a concrete area. But we
also believe that this approach might be
applicable and valuable to any MIS devel-
opment. This process (see figure 5), like any experimental process, is based on hy-
potheses. In our case, modeling is a step between hypotheses and the experimental
step necessary to test these hypotheses (1) (e.g., test the interest to decoupling com-
mands). The role of the modeling step is to support the generation and specify a pos-
sible MIS implementation of the hypothesis. Adding a retroactive loop (2) from the
test to the model would be useful to relate empirical experiences to a model or part of
it: this will improve the predictive power of the design model. Multiple iterations and
experiments of this kind will feed a collection of mixed interactive systems patterns
(3). Moreover, in our case the usability inspection successfully identified a set of
usability problems (4). However, usability inspection missed some flaws observed in
the test (e.g. form of the board). Adding a feedback loop (5) between test and inspec-
tion steps would constitute an opportunity to collect empirical experiences to enrich
usability inspections and also their downstream utility [14]. In the long term, this
empirical data could improve both usability methods and usability recommendations
for MIS. Finally, this work has been done in the context of a museum.

References

1. ARToolkit: http://www.hitl.washington.edu/artoolkit
2. Bach, C., Scapin, D.L.: Adaptation of Ergonomic Criteria to Human-Virtual Environments

Interactions. In: Conference proceedings of Interact 2003, Zurich, Switzerland, pp. 880–
883. IOS Press, Amsterdam (2003)

3. Bach, C., Scapin, D.L.: Obstacles and perspectives for evaluating Mixed Reality Systems
Usability. In: Int. Workshop MIXER 2004, Funchal, pp. 72–79. ACM Press, New York
(2004)

4. Bowman, D.A., Kruijff, E., LaViola, J.J., Poupyrev, I.: 3D user Interafces: Theory and
Practice. Addison-Wesley, Reading (2004)

5. Charfi, S., Dubois, E., Bastide, R.: Articulating Interaction and Task Models for the De-
sign of Advanced Interactive Systems. In: Winckler, M., Johnson, H., Palanque, P. (eds.)
TAMODIA 2007. LNCS, vol. 4849, pp. 70–84. Springer, Heidelberg (2007)

6. Coutrix, C., Nigay, L.: Mixed Reality: A Model of Mixed Interaction. In: Conference pro-
ceedings of AVI 2006, pp. 45–53. ACM Press, New York (2006)

Fig. 5. Summary of the development process

28 E. Dubois, C. Bach, and P. Truillet

7. Dubois, E., Gray, P.D., Nigay, L.: ASUR++: a Design Notation for Mobile Mixed Sys-
tems. In: Paterno, F. (ed.) Interacting With Computers, vol. 15, pp. 497–520 (2003)

8. Dubois, E., Gray, P.: A Design-Oriented Information-Flow Refinment of the ASUR Inter-
action Model. In: The IFIP conf. proc. of EIS 2007, Spain, p. 18 (2007)

9. Dubois, E., Gray, P., Ramsay, A.: A Model-Based Approach to Describing and Reasoning
about the Physicality of Interaction. In: Proc. of Physicality 2007, UK, pp. 77–82 (2007)

10. Frölich, B., Plate, J.: The cubic mouse: a new device for 3D input. In: CHI 2000, The
Hague (NL), pp. 526–531 (2000)

11. Google Earth: http://earth.google.com
12. Green, C.S., Bavelier, D.: Effect of action video games on the spatial distribution of visu-

ospatial attention. J. of experimental psychology: Human perception and performance 32,
1465–1478 (2006)

13. Griffiths, G., Sharples, S., Wilson, J.R.: Performance of new participants in virtual envi-
ronments: The Nottingham tool for assessment of interaction in virtual environments (NA-
IVE). Int. J. of Human-Computer Studies 64, 240–250 (2006)

14. Hartson, H.R., Andre, T.S., Williges, R.C.: Criteria for evaluating usability evaluation
methods. International Journal of HCI 13, 373–410 (2001)

15. Hilliges, O., Sandor, C., Klinker, G.: Interaction Management for Ubiquitous Augmented
Reality User Interfaces. Dipl. Thesis, TU München (2005)

16. International Standards Organisation, ISO 9241 - 11. Ergonomics requirements for office
work with visual display terminals - Part 11: Guidance on usability. Genève: ISO (1997)

17. Ishii, H., Ullmer, B.: Emerging Frameworks for Tangible User Interfaces. IBM Systems
Journal 39(3/4), 915–931 (2000)

18. Miller, G.A.: The magical number seven, plus or minus two: Some limits on our capacity
for processing information. Psychological Review 63, 81–97 (1956)

19. Phidgets: http://www.phidgets.com/
20. Renevier, P., Nigay, L., Bouchet, J., Pasqualetti, L.: Generic interaction techniques for

mobile collaborative mixed systems. In: Proc. of CADUI 2004, pp. 307–320. ACM, New
York (2004)

21. Schmalstieg, D., Encarnaçao, M., Szalavari, Z.: Using Transparent Props for Interaction
with Virtual Table. In: ACM conf. proc. of I3D 1999, pp. 147–154 (1999)

22. Shaer, O., Leland, N., Calvillo-Gamez, E.H., Jacob, R.J.K.: The TAC paradigm: specify-
ing tangible user interfaces. In: Conf. proc. of PUC, pp. 359–369 (2004)

23. Trevisan, D.G., Vanderdonckt, J., Macq, B.: Conceptualising mixed spaces of interaction
for designing continuous interaction. Virtual Reality 8(2), 83–95 (2005)

24. Tse, E., Shen, C., Greenberg, S., Forlines, C.: Enabling Interaction with Single User Ap-
plications through Speech and Gestures on a Multi-User Tabletop. In: Conf. proc. AVI
2006, Italy, pp. 336–334 (2006)

25. Ullmer, B., Ishii, H.: The metaDESK: models and prototypes for tangible user interfaces.
In: Proceedings of the ACM symposium UIST 1997, Canada, pp. 223–232 (1997)

26. Wagensberg, J.: Food for Thought. Ecsite Newsletter, (44) Autumn 2000 (2000)
27. Ware, 2, Information Visualization: Perception for Design, p. 484. Morgan Kauffman, San

Francisco (2000)

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 29–42, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Attentive Groupware Device to Mitigate
Information Overload

Antonio Ferreira and Pedro Antunes

Department of Informatics, University of Lisbon
Campo Grande, 1749–016 Lisboa, Portugal

{asfe, paa}@di.fc.ul.pt

Abstract. We propose an attentive device for synchronous groupware systems
to mitigate information overload. The opportunity seeker device leverages the
users’ natural alternation between doing individual work and attending to the
group to dynamically manage the delivery timing and quantity of group aware-
ness information that each user is exposed to. We describe how this device can
be implemented on an electronic brainstorming tool and show its influence on
the distribution of ideas to the users. Results from a laboratory experiment using
this tool indicate that group performance increased 9.6% when compared to the
immediate broadcast of ideas and a post-hoc analysis suggests that information
overload was attenuated: users were subject to 44.1% less deliveries of ideas,
which gave them 54.7% more uninterrupted time; users switched 18.8% faster
from submitting an idea to start typing the next idea; and the time to write an
idea was reduced by 16.3%.

1 Introduction

Attention management is increasingly important in our information-rich world as
evidenced by the growing momentum of Attentive User Interfaces (AUI) in the field
of Human-Computer Interaction (HCI) [1,2]. The prime motivation for AUI is the
recognition that as the needs for information rise so do the costs of not paying atten-
tion to it. So, instead of assuming the user is always focused on the entire computer
display, AUI negotiate the users’ attention by establishing priorities for presenting
information.

Most AUI research is grounded on single-user work and assumes user performance
degrades with the number of simultaneous requests for attention. Therefore, research-
ers have enhanced input/output devices so that the user remains focused on a primary
task without getting too much distracted by secondary—typically unrelated and unex-
pected—tasks, e.g., by using eye-gaze and body orientation sensors [3], statistical
models of interruptibility [4], and displays capable of showing information at various
levels of detail [5].

Regarding multi-user work, the research is situated in video conferencing [6,7],
making the study of AUI for groupware systems a largely unexplored area. We pre-
sent three arguments to promote further investigations on this subject.

Firstly, the convergence of AUI and groupware systems poses new challenges to
researchers due to differences in individual and group work:

30 A. Ferreira and P. Antunes

− People working in a group are more occupied with requests for attention because
they have to manage more information flows;

− Instead of doing a single extensive task, group members usually execute a series
of intertwined tasks;

− Group members have to explicitly manage the trade-offs of attending to the group
and doing individual work; and

− In group work the primary and secondary tasks are typically related and may both
contribute to the shared goal.

Secondly, the current emphasis in AUI applied to groupware is still, to the best of
our knowledge, on evaluating the enhanced input/output devices per se, e.g., the fluid-
ity of movement or sudden brightness changes in videos [6], in contrast with deter-
mining the outcomes of using these devices in work settings.

Thirdly, groupware researchers are designing systems that provide ever greater
awareness information about the presence and actions performed by users on a group
through devices such as radar views, multi-user scrollbars, and telepointers [8,9].
However, a problem with this trend is that it fails to recognise that sometimes more is
less due to the limitations in the human attentive capacity.

Given this situation, we must consider the group attention problem: as the needs
for collaboration rise so do the costs of not paying attention and becoming overloaded
with information.

We argue that this problem is inadequately addressed by existing groupware
awareness devices because they are designed having into consideration hardware
limitations, e.g., decorators for telepointers to attenuate jitter effects due to network
latency [10], but do not make any assumptions regarding the human attentive capac-
ity. Furthermore, these devices require manual control of the type and quantity of
group awareness information, e.g., via filters, thus penalising individual performance.
On the other hand, the devices restrict the amount of information displayed to the
user, which mitigates information overload.

This trade-off between the benefits of limiting group awareness information and
manual intervention by the user sets the stage for introducing a conceptual attentive
device for groupware systems to automatically adjust awareness information based
upon each user’s predicted state of attention, which we present in Sect. 3. In Sect. 4
we explain how this device can be implemented on an attentive electronic brainstorm-
ing tool, and in Sect. 5 we describe a laboratory experiment to evaluate group per-
formance with and without the attentive device, whose results are shown in Sect. 6.
We conclude the paper in Sect. 7 with a summary of contributions and paths for fu-
ture work.

2 Related Work

The study of AUI for groupware systems is, for the most part, an unexplored research
area, with the exception of video conferencing. The GAZE-2 system was developed
to facilitate the detection of who is talking to whom in remote meetings [6]. It works
by displaying video images of the users’ faces on the computer display, which can be
automatically rotated by intervention of eye-trackers placed in front of each user, e.g.,
so that the faces appear to be staring at the user who is speaking. In this way, group

 An Attentive Groupware Device to Mitigate Information Overload 31

turn taking may be more natural and require fewer interruptions to determine who will
speak next.

Another feature of GAZE-2 is the automatic filtering of voices when multiple con-
versations are being held at the same time. Depending upon the user in focus, the
respective audio stream is amplified, and the other streams are attenuated (but not
eliminated). If the focus of interest suddenly changes, as sensed by the eye-tracker,
the audio is again adjusted. Filters are also applied to the video images by decreasing
their quality as the angle of rotation increases, to save network bandwidth.

eyeView explores the GAZE-2 ideas in the context of large meetings. It manipu-
lates the size of video windows, arranged side-by-side, and the voice volumes of each
user as a function of the current focus of attention [7].

These two groupware systems suggest that audio and video filters should be used
to manipulate the amount of group awareness information that users are exposed to
during electronic meetings. However, we found no evidence that group work bene-
fited. Instead, the literature mentions technological evaluations through user question-
naires that measured the self-perception of eye-contact and distraction, as well as
changes in colour and brightness during camera shifts [6]. A similar situation occurs
with eyeView [7].

Some studies do address the evaluation of AUI from the perspective of task execu-
tion, but are restricted to single-user activity. One study measured the effects of inter-
ruptions on completion time, error rate, annoyance, and anxiety, and suggests that
AUI should defer the presentation of peripheral information until task boundaries are
reached [11]. In another study, the effectiveness and efficiency of users were evalu-
ated as they performed two types of tasks under the exposure of four methods for
coordinating interruption, and recommends that AUI should let users manually nego-
tiate their own state of availability, except when response time for handling the inter-
ruptions is critical [12].

However, as we mentioned earlier, there are numerous differences in individual
and group work, which opens an opportunity for doing research on AUI for group-
ware systems.

3 The Opportunity Seeker Device

To address the group attention problem that we stated in the introduction—high-
lighting the need to mitigate information overload during computer-mediated group
work—we devised an attentive groupware device, called the opportunity seeker, to
dynamically manage the delivery timing and quantity of group awareness information
based upon each user’s state of attention.

There is a trade-off in managing the timing and quantity of group awareness in-
formation, in that too few updates may give the wrong impression about what the
group is doing, while too many may provide up-to-date information but be too dis-
tracting. We address this trade-off by leveraging the typical alternation between pri-
mary and secondary tasks in group work to find natural opportunities for interrupting
the user. Following Bailey and Konstan [11], these opportunities should occur at the
boundaries between consecutive tasks, i.e., for group work, at the transitions between
the user doing individual work and paying attention to the group (see Fig. 1).

32 A. Ferreira and P. Antunes

Fig. 1. Natural task switching during group work

Conceptually, the opportunity seeker has a queue for storing group awareness over
time and this information should only displayed to the user when s/he is likely not
doing individual work. Furthermore, a limit may be enforced to the quantity of infor-
mation delivered at each opportunity if the rhythms of the user and the group differ
too greatly, to avoid overloading the user.

4 An Attentive Brainstorming Tool

We implemented the opportunity seeker device on ABTool, a custom-made electronic
brainstorming tool with built-in sensors of user performance, to dynamically manage
the delivery timing and quantity of ideas displayed to each user over brainstorming
sessions. In electronic brainstorming users can submit ideas in parallel and as the
number of ideas increases, e.g., because the group is inspired or group size is large,
users may no longer be able to process the flow of ideas, and may even become dis-
tracted by it, thus causing information overload.

A major challenge in applying the opportunity seeker to ABTool was to detect task
switching during electronic brainstorming activity. Theoretically, the rules of brain-
storming [13] encourage users to do two cognitive tasks: the first is to produce as
many ideas as possible, because quantity is wanted; and the second is to read, or at
least look at, the other users’ ideas, because combination and improvement of ideas is
sought. From a practical viewpoint, we analysed data from ABTool’s logs of activity
running with immediate broadcast of ideas (see sample and comments in Fig. 2), from
which three patterns of user activity emerged:

− Users usually did not stop typing when they received ideas from the other users,
thus, we assume they continued focused on the individual task of generating ideas;

− Users typically paused after putting forward an idea, presumably to keep up with
the group; and

− We found numerous periods of time with no typing activity (not shown in Fig. 2).

Based upon this evidence, we hypothesise that a task boundary, i.e., an opportunity
to display ideas from others, occurs when the user submits an idea to the group. In
addition, new ideas should be delivered after a period of inactivity (currently, ten
seconds), so that the user does not get the impression that the group is not producing
ideas too.

Figure 3 shows the state transition diagram that models the behaviour of the user
as assumed by the opportunity seeker on ABTool (also cf. Fig. 1): the user is either typ-
ing an idea (doing individual work) or reading other users’ ideas (attending to the
group).

Doing individual work Attending to the group

 An Attentive Groupware Device to Mitigate Information Overload 33

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

2
0

2
4

6
8

10
12

14
16

18

SESSION TIME IN SECONDS

A
C

T
IV

IT
Y

 O
V

E
R

 P
E

R
IO

D
S

 O
F

 2
 S

E
C

O
N

D
S

KEY PRESSES WHILE TYPING AN IDEA
SUBMISSION OF IDEA TO THE GROUP
DISPLAY OF IDEAS FROM THE GROUP

Fig. 2. User and group activity during a brainstorming session with ABTool, with instant
broadcast of ideas to everyone on the group. Above the X-axis are aggregated counts of user
key presses. The spikes occurred when the user pressed the delete or cursor keys. The circles on
the X-axis show when the user submitted the idea s/he was typing to the group. Below the X-
axis are the instants in time when the user received ideas from the other users.

Fig. 3. Model of user behaviour assumed by the opportunity seeker on ABTool

Another feature of the opportunity seeker is that it imposes a limit on the number of
ideas from others that can be displayed at once (currently, ten). This is to avoid over-
loading the user, e.g., by filling up the entire computer screen with new ideas, when
the user is working at a slower pace than the other group members.

Figure 4 shows a simulation that exemplifies the delivery of ideas with the opportu-
nity seeker compared to the immediate broadcast of ideas.

Technically, ABTool is characterised by a client-server architecture, in which the
server mediates the group information flows. The server also collects performance
data, which are stored in an XML log. The purpose of the clients, one per user, is to
receive input from the users and pass it on to the server, and to display new ideas as
they become available from the server.

ABTool is written in C# and is built on top of the Microsoft .NET Framework 2.0.
Communication between the clients and the server is done via TCP/IP sockets and all
messages (ideas, key presses, users joining or retiring the group, sessions starting or

Typing
an idea

Reading other
users’ ideas

Idea submitted to group

Key press

Key press No key press over period of time

No key press over period of time

34 A. Ferreira and P. Antunes

Fig. 4. Simulation of group and user activity during a brainstorming session with immediate
broadcast of ideas (upper region) and with the opportunity seeker (lower region). In both cases
the user produces three ideas (3, 11, and 12) but the exposure to the nine ideas s/he received
from the other users is different. For illustration purposes, we do not show the propagation of
ideas 3, 11, and 12 to the group, and limit the number of ideas delivered at once to five.

ending) are automatically serialised and de-serialised using BinaryFormatter objects
attached to NetworkStream instances.

Within the client and server applications, messages are propagated using events, to
which consumer objects can subscribe themselves. Given that almost all classes in
ABTool handle message events, namely the user interfaces, the opportunity seeker, and
the classes responsible for receiving and sending messages from/to the network, we
defined an IHandlesMessages interface together with a default implementation for it,
DefaultHandlesMessages, which relies on reflection to allow those classes to delegate
the determination of the method to run as a function of the type of message associated
with the event.

start()
pause()
stop()

name : string
AttentiveDevice

DefaultHandlesM essages

fireNewMessage()
subscribeNewMessage()
routeNewMessage()
unsubscribeNewMessage()

«interface»
IHandlesM essages

users : IDictionary<string, UserNode>
activationTimeSpan : int
ideasAtOnce : int
verificationPeriod : int

OpportunitySeeker

ideasOnHold : Queue<string>
whenLastKeyPress : DateTime
timer : Timer

UserNode

1 0..*

«uses»

Fig. 5. Class diagram showing details of the opportunity seeker on ABTool

Figure 5 shows that the opportunity seeker on ABTool derives from the AttentiveDevice
generalisation, which actually implements immediate delivery of ideas from the users

Computer mediation with instant broadcast of ideas

Other users producing ideas

User sending (↓) and receiving (↑) ideas

User sending (↑) and receiving (↓) ideas

Computer mediation with the opportunity seeker

3

1

1

1

2

2

2

 3
1,2

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

9

9

9

10

10

10

11

 11
4,5,6,7,8

12

 12
9,10

 An Attentive Groupware Device to Mitigate Information Overload 35

to the group. The OpportunitySeeker class alters this default behaviour by maintaining
separate queues, one per user, containing ideas that have been put forward by the
other users on the group. The queue is stored in the UserNode, which also keeps a
Timer object that every verificationPeriod milliseconds verifies the time of the most re-
cent key press by the user, and if it was more than activationTimeSpan milliseconds ago,
then it delivers up to ideasAtOnce ideas to the user.

The AttentiveDevice and OpportunitySeeker classes implement three methods: start() is
run when a session starts or resumes; pause() is executed when, for some reason, the
session needs to be paused; and stop() is run at the end of a session. Other methods
handle the reception and forwarding of messages, but we omitted those for brevity.

To conclude the presentation of ABTool, we show in Fig. 6 two screen shots of the
client application with the opportunity seeker running.

Fig. 6. Opportunity seeker managing the delivery of ideas on ABTool. Left: While typing an
idea, the user receives no new ideas from the group. Right: When the user submits an idea to
the group, new ideas from others are displayed.

5 Laboratory Experiment

We now describe a laboratory experiment that we set up using ABTool to test the hy-
pothesis that group performance, measured as the number of ideas produced, im-
proves when groups are exposed to the opportunity seeker device.

5.1 Participants

A total of 11 groups of 5 people, for a total of 55 volunteers (44 men and 11 women)
participated in the experiment. The median age was 23 years (min. 20 and max. 29).
51 participants were students (40 undergraduate, 10 MSc, 1 PhD), and the remaining

36 A. Ferreira and P. Antunes

4 comprised researchers, a software developer, and a translator. A convenience sam-
pling was used to select participants, who were recruited from social contacts and
posters on corridors at the University of Lisbon. No monetary reward was offered and
the only information available was that the experiment would concern brainstorming.

5.2 Apparatus

The experiment was conducted in a laboratory room having five laptops with identical
hardware (Intel Pentium M at 1.2 GHz, 1 GByte of RAM) and software specifications
(Microsoft Windows XP SP2, .NET Framework 2.0), interconnected by a dedicated
100 Mbit/s Ethernet network. Keyboard sensitivity, desktop contents, display resolu-
tion, and brightness were controlled. Each computer had screen-recording software
(ZD Soft Screen Recorder 1.4.3), and a web-camera (Creative WebCam Live!) af-
fixed to the top of the display. The client application of ABTool was installed on the
five laptops and the server was installed on an extra laptop.

5.3 Task

Participants completed practice and test tasks, both related to brainstorming. The
practice task allowed participants to get familiar with ABTool. In the test task, partici-
pants were given a question and then asked to generate as many ideas as possible, by
typing on the keyboard and by looking at the computer display. Speech and other
forms of communication were disallowed.

5.4 Design

A repeated measures design was chosen for the experiment. The independent variable
was device type and every group of participants was under the influence of a control
treatment (CT)—with immediate broadcast of ideas to the group—and an experimen-
tal treatment, with the opportunity seeker (OS). The dependent variable, group perform-
ance, was calculated from the sum of the number of ideas produced by each user on
the group per brainstorming session.

Table 1. Session order/brainstorming question per group and treatment. The questions were: A,
how to preserve the environment; B, how to attract more tourists to Portugal; C, how to
improve the university; and D, how to stimulate the practice of sports.

 Groups

 1 2 3 4 5 6 7 8 9 10 11

CT 1/C 2/D 4/C 3/B 1/B 1/A 2/C 3/B 2/B 3/C 1/A

OS 3/B 1/A 2/B 4/C 3/C 2/B 3/A 1/C 1/C 2/A 3/B

The order of exposure to the treatments and the brainstorming questions are de-
picted in Table 1. We note that, sometimes, session order is greater than two and that
four questions were used, because we are reporting here a part of a larger experiment
with two additional treatments, involving similar brainstorming tasks.

 An Attentive Groupware Device to Mitigate Information Overload 37

5.5 Procedure

A trial started when a group of participants arrived at the laboratory room. An intro-
duction to this research was given and participants were informed on their privacy
rights and asked to sign a consent form. Next, participants filled in an entrance ques-
tionnaire about gender, age, and occupation. Written instructions on the rules of
brainstorming and on the ABTool application were then handed in to all participants
and read out loud by the experimenter.

Participants were asked to carry out the practice task for 5 minutes, after which
questions about ABTool were answered. The group then performed the test tasks in
succession, each lasting for 15 minutes, with a brief rest period in between. At the end
of the trial, answers were given to the questions participants had about this research,
comments were annotated, and the experimenter gave thanks in acknowledgement of
their participation in the experiment.

6 Results

Results are organised in three parts: we begin with an analysis of overall group per-
formance, which is central to our research hypothesis; we then decompose group
performance in consecutive periods over a brainstorming session; finally, we show
results from a post-hoc analysis based upon more fine-grained data.

6.1 Group Performance

Groups produced an average of 10.0 extra ideas per session (SD = 17.2), +9.6%, when
under the exposure of the opportunity seeker (OS, M = 113.7, SD = 60.8) than under the
control treatment (CT, M = 103.7, SD = 62.0). A total of 1251 ideas were put forward
with the OS versus 1141 with the control device (see Table 2). Figure 7 further shows
that the difference between treatment medians was 25 ideas per session (108 vs. 83).

Table 2. Number of ideas per group and treatment

 Groups

 1 2 3 4 5 6 7 8 9 10 11 Total

CT 152 83 133 91 264 77 48 53 66 104 70 1141

OS 192 108 113 117 258 77 68 61 76 116 65 1251

The Shapiro-Wilk normality test indicated that both data distributions differed sig-

nificantly from a normal distribution; therefore we applied the non-parametric Wil-
coxon signed-ranks test, which revealed a significant 3.7% probability of chance
explaining the difference in group performance, W+ = 45.5, W− = 9.5.

We also analysed possible confounding influences from the questions or session
order on group performance to see if there was a bias introduced by popular questions
or a learning effect due to the nature of the repeated measures design. We applied the
Wilcoxon signed-ranks test to both scenarios, which found no significant influences:
p > 0.205 and p > 0.343, respectively.

38 A. Ferreira and P. Antunes

CT OS

50
10

0
15

0
20

0
25

0

ID
E

A
S

 P
E

R
 S

E
S

S
IO

N

Fig. 7. Group performance under the control (CT) and experimental (OS) treatments

Given this evidence, we can accept the hypothesis that group performance im-
proved when groups were exposed to the opportunity seeker device in electronic brain-
storming tasks with ABTool. In other words, group performance can increase by man-
aging the delivery timing and quantity of group awareness information displayed to
the users.

6.2 Group Performance Over Time

Concerning the analysis of group performance through the duration of the brainstorm-
ing sessions, we broke down the 900 seconds that each session lasted into consecutive
periods of 300, 150, and 30 seconds and counted the number of ideas put forward
during each period.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

SESSION TIME IN SECONDS

ID
E

A
S

 P
E

R
 A

G
G

R
E

G
A

T
IO

N
 P

E
R

IO
D

AGGREGATION PERIOD: 300 SECONDS

AGGREGATION PERIOD: 150 SECONDS

AGGREGATION PERIOD: 30 SECONDS

CT
OS

Fig. 8. Group performance through the duration of the brainstorming sessions under the control
(CT) and experimental (OS) treatments. Top: number of ideas per period of 300 seconds. Mid-
dle and bottom: same, considering periods of 150 and 30 seconds, respectively.

 An Attentive Groupware Device to Mitigate Information Overload 39

By using this approach we intended to highlight specific periods when one of the
devices would enable better group performance. For example, a brainstorming session
may be divided into at the beginning (when users usually have plenty of ideas), at the
middle, and at the end (when users are typically more passive). This division is actu-
ally depicted in the top region in Fig. 8, which shows that in all three periods of 300
seconds groups produced more ideas with the opportunity seeker than with the control
device. This outcome is reinforced by similar results at the 150 seconds level of ag-
gregation (see middle region in Fig. 8).

Finally, if we consider the count of ideas collected over consecutive periods of 30
seconds (see bottom region in Fig. 8), then group performance with the opportunity
seeker is better in 21 out of 30 cases than with the control device.

We do not provide more statistics for this type of analysis because its meaning
would be attached to the choice of periods, which depends on the context. Instead, we
note that there seems to be no particular phase when results with the opportunity seeker
could be considered worse than with the control device.

6.3 Post-Hoc Analysis

We also performed a post-hoc analysis comprising the influence of the opportunity
seeker on the delivery of ideas to the users and a fine-grained study of user perform-
ance in terms of task switching time and individual work. As with the previous analy-
sis of group performance, we also applied Wilcoxon signed-ranks tests to the data, but
in this case we were interested in estimating the plausibility of chance explaining the
differences, rather than doing null hypotheses significance testing, thus no family-
wise corrections were made.

The opportunity seeker device reduced the number of deliveries of group ideas that
reached a user in each session by 44.1% (W+ = 0, W− = 1540, p = 0.000), from an
average of 82.7 (SD = 48.1) to 46.2 (SD = 14.6). Figure 9a shows more details. This
was possible because each delivery comprised a batch 1.9 ideas on average (SD =
1.2), with up to 5 ideas per batch in 99% of the cases, unlike with the control device,
in which new ideas were immediately broadcasted, one by one, to the group.

CT OS

50
10

0
15

0
20

0

D
E

LI
V

E
R

IE
S

 O
F

 ID
E

A
S

 P
E

R
 S

E
S

S
IO

N

 CT OS

10
20

30
40

S
E

C
O

N
D

S
 B

E
T

W
E

E
N

 D
E

LI
V

E
R

IE
S

 (a) (b)

Fig. 9. Idea deliveries under the control (CT) and experimental (OS) treatments

40 A. Ferreira and P. Antunes

Users also had 54.7% (W+ = 1540, W− = 0, p = 0.000) more time to think about and
type ideas without receiving new ideas from others: an average of 21.2 seconds with
the OS device (SD = 6.1) vs. 13.7 (SD = 5.9) with the CT device (see Fig. 9b).

The opportunity seeker trades up-to-date group awareness for less frequent deliveries
of batches of information. This could have aggravated the alternation between doing
individual work and attending to the group if, for instance, users had slowed down
because of the apparent delays in group awareness updates or had become overloaded
by the quantity of information in the batches.

In fact, users switched 18.8% (W+ = 469, W− = 1071, p = 0.012) more rapidly from
submitting an idea to the group to start typing the next idea, presumably reading ideas
from others in between: 27.7 seconds per idea (SD = 19.2) vs. 34.1 (SD = 34.3), on
average (see Fig. 10a). We also found that, with the OS device, users needed an aver-
age of 21.5 seconds (SD = 6.4) versus 25.7 (SD = 17.3), −16.3% (W+ = 422, W− =
1118, p = 0.004) of time, to type an idea (see Fig. 10b).

CT OS

0
50

10
0

15
0

20
0

S
E

C
O

N
D

S
 F

R
O

M
 S

U
B

M
IT

T
IN

G
 T

O
 T

Y
P

IN
G

 CT OS

0
20

40
60

80

S
E

C
O

N
D

S
 T

O
 W

R
IT

E
 A

N
 ID

E
A

 (a) (b)

Fig. 10. Aspects of user performance under the control (CT) and experimental (OS) treatments

This evidence suggests that the opportunity seeker on ABTool mitigated information
overload by leveraging the users’ natural rhythms for doing individual work and at-
tending to the group to manage the delivery of ideas.

7 Conclusions and Future Work

We highlighted the need to apply Attentive User Interfaces beyond single-user sys-
tems and to multi-user systems, e.g., due to the differences in individual and group
work, and made contributions to address the group attention problem.

Firstly, we devised an attentive groupware device, the opportunity seeker, that ac-
knowledges the users’ natural alternation between doing individual work and at-
tending to the group, and manipulates the delivery timing and quantity of group
awareness based upon the user’s predicted state of attention. Secondly, we showed
how this device can be implemented on an electronic brainstorming tool and how
task boundaries can be detected via keyboard activity. Thirdly, we provided evi-
dence that the opportunity seeker device can increase the work done by groups, and

 An Attentive Groupware Device to Mitigate Information Overload 41

that the improvement amounts to 9.6% in the number of ideas produced in elec-
tronic brainstorming tasks.

In addition, results from a post-hoc analysis show that the opportunity seeker reduced
the number of deliveries of ideas by 44.1% by combining ideas in small batches and
that this translated into 54.7% more time to think about and type ideas without receiv-
ing new ideas from others. In these conditions, users were 18.8% faster in alternating
between generating an idea, which they did in 16.3% less time, and reading other
users’ ideas.

We believe that the attentive device we propose in this paper provides benefits for
today’s and tomorrow’s demands: on the one hand, even if the users in our experi-
ment were not overloaded with information, the number of ideas produced was, none-
theless, higher; on the other hand, the opportunity seeker facilitates the creation of elec-
tronic brainstorming sessions with larger group sizes because it ensures that each user
will be exposed to new ideas from others at his or hers own natural rhythm, thus
automatically mitigating information overload.

As for future work, we are considering several research paths: one is to re-evaluate
the opportunity seeker in other types of computer-mediated group tasks, such as instant
messaging or negotiation; another path is to analyse the quality of the ideas to deter-
mine, e.g., if there are more duplicates with the opportunity seeker; we are also consid-
ering doing a qualitative analysis based upon the videos we have captured with the
screen recorder and the web-camera during the brainstorming sessions, to assess our
assumptions about the users’ focus of attention in this context, so far based solely
upon activity logs; finally, we have plans to gather more fine-grained data (compared
to video analysis) by introducing an eye-tracker in future experiments.

Acknowledgments

This work was supported by the Portuguese Foundation for Science and Technology,
through projects PTDC/EIA/67589/2006 and POSC/EIA/57038/2004, and the Mul-
tiannual Funding Programme.

References

1. Vertegaal, R.: Attentive user interfaces: Introduction. Communications of the ACM 46(3),
30–33 (2003)

2. Roda, C., Thomas, J.: Attention aware systems: Introduction to special issue. Computers in
Human Behavior 22(4), 555–556 (2006)

3. Vertegaal, R., Shell, J.S., Chen, D., Mamuji, A.: Designing for augmented attention: To-
wards a framework for attentive user interfaces. Computers in Human Behavior 22(4),
771–789 (2006)

4. Fogarty, J., Ko, A.J., Aung, H.H., Golden, E., Tang, K.P., Hudson, S.E.: Examining task
engagement in sensor-based statistical models of human interruptibility. In: CHI 2005:
Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 331–
340. ACM Press, New York (2005)

5. Baudisch, P., DeCarlo, D., Duchowski, A.T., Geisler, W.S.: Focusing on the essential:
Considering attention in display design. Communications of the ACM 46(3), 60–66 (2003)

42 A. Ferreira and P. Antunes

6. Vertegaal, R., Weevers, I., Sohn, C., Cheung, C.: GAZE-2: Conveying eye contact in
group video conferencing using eye-controlled camera direction. In: CHI 2003: Proceed-
ings of the SIGCHI conference on Human factors in computing systems, pp. 521–528.
ACM Press, New York (2003)

7. Jenkin, T., McGeachie, J., Fono, D., Vertegaal, R.: eyeView: Focus+context views for
large group video conferences. In: CHI 2005: Extended abstracts on Human factors in
computing systems, pp. 1497–1500. ACM Press, New York (2005)

8. Raikundalia, G.K., Zhang, H.L.: Newly-discovered group awareness mechanisms for sup-
porting real-time collaborative authoring. In: AUIC 2005: Proceedings of the Sixth Aus-
tralasian conference on User interface, pp. 127–136. Australian Computer Society, Syd-
ney, Australia (2005)

9. Gutwin, C., Greenberg, S.: A descriptive framework of workspace awareness for real-time
groupware. Computer Supported Cooperative Work 11(3), 411–446 (2002)

10. Gutwin, C., Benford, S., Dyck, J., Fraser, M., Vaghi, I., Greenhalgh, C.: Revealing delay
in collaborative environments. In: CHI 2004: Proceedings of the SIGCHI conference on
Human factors in computing systems, pp. 503–510. ACM Press, New York (2004)

11. Bailey, B.P., Konstan, J.A.: On the need for attention-aware systems: Measuring effects of
interruption on task performance, error rate, and affective state. Computers in Human Be-
havior 22(4), 685–708 (2006)

12. McFarlane, D.C.: Comparison of four primary methods for coordinating the interruption of
people in human-computer interaction. Human-Computer Interaction 17(1), 63–139
(2002)

13. Osborn, A.F.: Applied imagination: Principles and procedures of creative problem-solving,
3rd edn. Scribner, New York (1963)

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 43–57, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Multi-fidelity User Interface Specifications

Thomas Memmel1, Jean Vanderdonckt2, and Harald Reiterer1

1 Human-Computer Interaction Group, University of Konstanz,
Universitätsstrasse 10, 78457 Konstanz, Germany

2 Belgian Laboratory of Computer-Human Interaction, Université catholique de Louvain,
Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium
{memmel, reiterer}@inf.uni-konstanz.de,

jean.vanderdonckt@uclouvain.be

Abstract. Specifying user interfaces consists in a fundamental activity in the
user interface development life cycle as it informs the subsequent steps. Good
quality specifications could lead to a user interface that satisfies the user’s
needs. The user interface development life cycle typically involves multiple ac-
tors possessing all their own particular inputs of user interface artifacts ex-
pressed with their own formats, thus posing new constraints for integrating
them into comprehensive and consistent specifications of a future user interface.
This paper introduces a design technique where these actors can introduce their
artifacts by sketching them in their respective input format so as to integrate
them into one or multiple output formats. Each artifact can be introduced in a
particular level of fidelity (ranging from low to high) and switched to an adja-
cent level of fidelity after appropriate refining. Refined artifacts are then cap-
tured in appropriate models stored in a model repository. In this way, co-
evolutionary design of user interfaces is introduced, defined, and supported by a
collaborative design tool allowing multiple inputs and multiple outputs. This
design paradigm is exemplified on a case study and has been tested in an em-
pirical study revealing how designers appreciate it.

Keywords: Collaborative design, formal and informal specifications, specifica-
tion of interactive systems, usability requirements, user interface specifications.

1 Introduction and Motivations

Software practitioners and Human-Computer Interaction (HCI) specialists today con-
cur that structured approaches are required to design, specify, and verify interactive
systems [2,6,9,11,22] so as to obtain a high usability of their User Interface (UI)
[19,21]. The design, the specification, and the verification of user-friendly and task-
adequate UIs have become a success critical factor in many domains of activity.

In the German automotive industry for instance, a wide range of different interac-
tive systems exists such as: in-car information systems supporting the driver while
traveling, information visualization of navigation data and dynamic traffic data. Oper-
ating such systems must never compromise road safety, and the respective UIs must
provide intuitive and easy-to-use navigation concepts to reduce driver’s distraction to
the lowest value possible. Both information visualization and navigation design are

44 T. Memmel, J. Vanderdonckt, and H. Reiterer

also important for corporate web sites and digital sales channels. Web applications,
such as the car configuration, play an important role in the sales planning and disposal
of extra equipment. In the car manufacturers we analyzed over the past three years
(among them are Dr. Ing. h.c. F. Porsche AG and Daimler AG), UI design remains a
too marginal activity that deserves more attention and HCI methods are not suffi-
ciently implied in the overall development life cycle [17,18]. Most UI development
tools are inappropriate for supporting actors from different disciplines in designing
interactive systems. They all possess their own particular inputs of UI artifacts ex-
pressed with their own formats and these format are generally incompatible and het-
erogeneous. On the one hand, formal UI tools may prevent some actors from taking
part in collaborative design if they these tools do not have an adequate knowledge of
specific input formats and terminologies. On the other hand, informal UI tools may
lead to misunderstanding and conflicts in communication across actors, particularly
with programmers. In particular, some tools turn out to be more focused on require-
ments management than on providing support in extracting requirements from user
needs and translating them into good UI design. After all, despite - or perhaps pre-
cisely because of - the vast functionality of many tools, the outcome is often unsatis-
factory in terms of UI design. Due to the lack of appropriate tools, many actors tend
instead to use tools they are familiar with and which can be categorized as being low
threshold (for application) - low ceiling (of results), a phenomenon observed in [8].
Ultimately, we distinguish two different families of tool users:

1. Client: actors like business personnel, marketing people, domain experts, or HCI
experts use office automation applications such as word processors and presenta-
tion software [18] to document user’s needs and their contexts of use [7] in order
to define the problem space. They will translate the needs as perceived from the
real world, and their contextual conditions, into general usage requirements and
evaluate their work at several quality stages. At this stage, responsibility is typi-
cally shared with, or completely passed on to, a supplier.

2. Supplier: actors with a sophisticated IT background (e.g., programmers or design-
ers) translate usage requirements into UI and system requirements, deliver proto-
types, and conclude the process in a UI specification. They prefer working with UI
builders, and using more formal, precise and standardized notations, they narrow
the solution space towards the final UI.

1.1 Shortcomings of, and Changes Desired in Current UI Specification Practice

The difference between these two categories of actors tends to result in a mixture of
formats. This makes it difficult to promote concepts and creative thinking down the
supply chain without media disruptions and loss of precision [16]. The following
negative factors therefore contribute to UI development failure:

1. The lack of a common course of action and the use of inappropriate, incompatible
terminologies and modeling languages [26] that prevent even the minimum levels
of transparency, traceability and requirements-visualization that would be ade-
quate for the problem.

2. The difficulty in switching between abstract and detailed models due to a lack of
interconnectivity [8].

 Multi-fidelity User Interface Specifications 45

3. The difficulty of traveling from problem space to solution space, a difficulty that
turns the overall UI development into a black-box process.

4. The burial of mission-critical information in documents that are difficult to re-
search and have very awkward traceability. Experts are overruled when the UI de-
sign rationale is not universally available in the corresponding prototypes.

5. The perpetuation of unrecognized cross-purposes in client and supplier communi-
cation, which can lead to a premature change or reversal of UI design decisions,
the implications of which will not be realized until later stages.

6. The resulting misconceptions that lead to costly change requests and iterations,
which torpedo budgets and timeframes and endanger project goals.

Because of the immaturity of their UI development processes, industrial clients de-
termine on a shift of responsibility and tend to change their UI specification practice:

1. Due to the strategic impact of most software, clients want to increase their UI-
related competency in order to reflect corporate values by high UI quality [18].

2. Whereas conceptual modeling, prototyping or evaluation have always been under-
taken by suppliers, the client himself now wants to work in the solution space and
therefore needs to develop the UI specification in-house [16].

3. The role of the supplier becomes limited to programming the final system. The
client can identify a timetable advantage from this change, and an important gain
in flexibility in choosing his suppliers. Having an in-house competency in UI-
related topics, the client becomes more independent and can avoid costly and time-
consuming iterations with external suppliers.

4. It is nearly impossible to specify a UI with office-like applications. The existing
actors, who are nevertheless accustomed to text-based artifacts, now require new
approaches. The task of learning the required modeling languages and understand-
ing how to apply these new tools must not be an unreasonably difficult one.

1.2 Tool Support That Is Adequate for the UI Design Problem

This cultural change must be supported by an integrating UI tool that allows the trans-
lation of needs into requirements and subsequently into good UI design (Table 1).

Table 1. Requirements for UI tools for interactive UI specification on the basis of [8,16]

Purpose/Added Value Tool Requirement

Traceability of design rationale; transparency of
translation of models into UI design

Switching back and forth between different
(levels of) models

Smooth transition from problem-space concepts to
solution space

Smooth progression between abstract and de-
tailed representations

HCI experts can build abstract and detailed proto-
types rapidly

Designing different versions of a UI is easy and
quick, as is making changes to it

Support for design assistance and creative thinking
for everybody; all kinds of actors can proactively
take part in the UI specification

Concentration on a specific subset of modeling
artifacts, which can be a UML-like notation or
one that best leverages collaboration

The early detection of usability issues prevents
costly late-cycle changes

Allowing an up-front usability evaluation of
look and feel; providing feedback easily

46 T. Memmel, J. Vanderdonckt, and H. Reiterer

In this paper we present both a set of models and a corresponding tool named IN-
SPECTOR, which are designed to support interdisciplinary teams in gathering user
needs, translating them into UI-related requirements, designing prototypes of different
fidelity and linking the resulting artifacts to an interactive UI specification. The term
interactive refers to the concept of making the process visually externalized to the
greatest extent possible. This concerns both the artifacts and the medium of the UI
specification itself. The latter should no longer be a text-based document, but a run-
ning simulation of how the UI should look and feel. Accordingly, we extend the
meaning of UI prototypes to also include the provision of access to information items
below the UI presentation layer. Being interactively connected, all of the ingredients
result in a compilation of information items that are necessary to specify the UI (Ta-
ble 2). In Section 2 we link our research to related work. Section 3 presents the com-
mon denominator in modeling that we developed. We explain how our tool, called
INSPECTOR, will use the resulting interconnected hierarchy of notations. We illus-
trate how abstract and detailed designs can easily be created and also exported in ma-
chine-readable User Interface Description Language (UIDL) such as XAML or
UsiXML. Section 4 presents the results of a first experimental evaluation that high-
lights the contribution of our approach. Section 5 gives a summary and an outlook.

Table 2. Main differences between prototypes and interactive UI specifications

Interactive UI Prototypes Interactive UI Specifications

Vehicle for requirements analysis Vehicle for requirements specification

Exclusively models the UI layer; may be inconsis-
tent with specification and graphical notations

Allows drill down from UI to models; relates UI to
requirements and vice versa

Either low-fidelity or high-fidelity Abstract first, specification design later

Supplements text-based specification Widely substitutes text-based specification

Design rationale saved in other documents Incorporates design knowledge and rationale

2 Related Work

An early version of a model-driven UI specification method has been already presented
[16]. With a separation of development concerns, different levels of abstraction and a
simulation framework, we were able to establish an advanced UI modeling method.
Although it was necessary to pre-define a domain-specific language (high-threshold),
the results added significant value to a previously long-winded UI specification process
(high-ceiling). But because the tool-chain was targeted towards the later stages of the
process, office applications remained dominant during earlier phases. Moreover, the
usage of a formal approach, targeted towards the generation of code from models,
proved to be limiting in terms of freedom in creativity and promotion of innovative
ideas. With INSPECTOR, we follow a model-based approach as our primary goal is
not code generation, but the collaborative and interdisciplinary specification of non-
standard UIs. However, our method and tool differ from other model-based solutions,
such as the tools Vista [11], Mapper [13], and CanonSketch [8].

 Multi-fidelity User Interface Specifications 47

Vista [11] enables the designer to define mappings between four views of the same
interactive system: a task model consisting of a recursive decomposition of the task
into sub-tasks, a CUI model, specifications of the interaction written with the UAN
notation, and specifications of the software architecture. Some of these relationships
can be established and maintained semi-automatically by Vista. No logical definition
of any underlying model is made explicit. Mapper [13] explicitly establishes map-
pings between models, either manually or automatically, the mappings being them-
selves governed by a common meta-model. This system does not allow any choice of
using this or that model transformation and does not provide any visualization.

CanonSketch was the first tool that used canonical abstract prototypes and an
UML-like notation, supplemented by a functioning HTML UI design layer. Task-
Sketch [8] is a modeling tool that focuses on linking and tracing use cases, by means
of which it significantly facilitates development tasks with an essential use-case nota-
tion. Altogether, TaskSketch provides three synchronized views: the participatory
view uses a post-it notation to support communication with end-user and clients, the
task-case view is targeted towards designers and is a digital version of index cards
(well-known artifacts of user-centered or agile developers) and the UML activity dia-
gram view is adequate for software engineers. As we will show in this paper, we
closely concur with the concepts of these tools, but our approach differs in some
important areas. Firstly, and in contrast to CanonSketch, we support detailed UI pro-
totyping because we found that the high-fidelity externalization of design vision is es-
pecially important in corporate UI design processes. Secondly, we provide more ways
of modeling (earlier text-based artifacts, task models and interaction diagrams).

DAMASK [14] and DENIM [21] both rely on a Zoomable User Interface (ZUI) ap-
proach for switching between different levels of fidelity through a visual drill-down
process. Based on this experience and our own, we followed a consistent implementa-
tion of this technique and we chose to implement an electronic whiteboard metaphor
for INSPECTOR. Whiteboards are commonly used because keeping the created arti-
facts visible to all actors enhances creativity, supports communication, makes it easier
to achieve a common design vision and leads to faster decision-making. These tools
also identified a need for supporting different levels of fidelity of requirements.

McCurdy et al. [15] identified five independent dimensions along which the level
of fidelity could be more rigorously defined: the level of visual refinement, the
breadth of functionality, the depth of functionality, the richness of interactivity, and
the richness of the data model. In the remainder of this paper, the four first dimen-
sions will be considered, the last one requiring a connection to a data model contain-
ing data. The level of fidelity is said to be low if the requirements representation only
partially evokes the final UI without representing it in full details. Between
high-fidelity (Hi-Fi) and low-fidelity (Lo-Fi), we can see medium-fidelity (Me-Fi).
We usually observe that UI requirements only involve one representation type, i.e.
one fidelity level at a time. But due to the variety of actors’ inputs, several levels of
fidelities could be combined together, thus leading to the concept of mixed-fidelity,
such as in ProtoMixer [22]. Beyond mixed-fidelity, we introduce multi-fidelity [10]
that is reached when UI requirements simultaneously involve elements belonging to
different levels of fidelity, but only one level of fidelity is acted upon at a time, thus
assuming that a transition is always possible between elements of different fidelity.

48 T. Memmel, J. Vanderdonckt, and H. Reiterer

3 The Common Denominator in UI-Related Modeling

A sophisticated UI tool must be able to support all actors in actively participating in
the UI specification process (Table 1). This requires it to deploy modeling techniques
that can be used easily by everybody. We know that the Unified Modeling Language
(UML) is a weak means of modeling the UIs of interactive systems [24]. As well as
its shortcomings in describing user interactions with the UI, its notation also over-
whelms most actors with too much (and mostly unnecessary) detail [1]. In most cases,
moreover, designing UIs is an interdisciplinary assignment and many actors might be
left behind due to the formality included in UML. Consequently, UML is like office-
like artifacts in being inadequate for specifying the look and feel of interactive UIs. In
our experience, the identification of adequate means of modeling for UI specification
is very much related to the ongoing discussion on bridging the gaps between HCI and
SE. This discussion is also propelled by the very difference in the way experts from
both fields prefer to express themselves in terms of formality and visual externaliza-
tion. HCI and SE are recognized as professions made up of very distinct populations.
In the context of corporate UI specification processes as outlined in Section 1, model-
ing the UI also requires the integration of the discipline of Business-Process Modeling
(BPM). The interaction layer - as interface between system and user - is the area
where HCI, SE and BPM are required to collaborate in order to produce high quality
UIs. As actors come from all three disciplines, the question is which modeling nota-
tions are adequate to extend and align their vocabulary.

Human-Computer
Interaction

High-Fi Prototype

Low-Fi Prototype,
Conceptual Model

UI Storyboard,
Navigation Map

Flow Chart,
Process Model

Task Map

Task Case

Personas, User
Scenario, User Role

Activity, Information,
Interaction Scenario

Software Engineering

Pilot System

Essential UI Prototype

Use Case Storyboard,
UI Flow Diagram

Activity, Robustness
& Sequence Diagram

Use Case Diagram

(Essential) Use Case

User Story, User Role,
Personas

Usage Scenario

Business Process
Modelling

Power Point Prototype

Mockups

UI Slide Show,
UI Storyboard

Activity, Sequence,
& Data Flow Diagram

Use Case Diagram

Business Use Case

Personas, Business
Roles

Business Vision

Identified Common
Denominator

Detailed Prototype

Abstract Prototype

UI Storyboard

Flow Chart, Activity &
Data Flow Diagram

Use Case Diagram,
Task Map

(Essential) Use Case

Personas,
User (Role) Map

Scenario (Map)

F
ro

m
 te

xt
 to

 v
is

ua
l U

I
ex

te
rn

al
iz

at
io

n

Extension and interoperability of modelling languages towards a common denominator

Fig. 1. Towards a common denominator in interdisciplinary modeling

As we found in our previous research, agile methods are close to HCI practice [17]
and therefore represent a promising pathfinder for a course of action common to all
three disciplines. Holt [12] presents a BPM approach that is based on UML class, ac-
tivity, sequence and use-case notations. Ambler based his agile version of the Ra-
tional Unified Process (RUP) on a similar, but less formal, BPM approach [1]. In

 Multi-fidelity User Interface Specifications 49

general, agile approaches already exist in HCI [17], BPM [1] and SE [3] and we can
define a common denominator for all three disciplines (Fig. 1). Our goal is to keep
this denominator as small as possible. We filter out models that are too difficult to be
understood by every actor. We do not consider models that are more commonly used
to support actual implementation or that have been identified as mostly unnecessary
by Agile Modeling [1]. Despite an agile freedom in terms of formality, IT suppliers
can nevertheless deduce the later structure of the UI much better from the resulting
interactive UI specification than they can from Office-like documents. We integrate
different levels of modeling abstraction to visualize the flow from initial abstract arti-
facts to detailed prototypes of the interaction layer. On the vertical axis in Fig. 1 we
distinguish the models according to their level of abstraction (or level of fidelity).
Models at the bottom are more abstract (i.e. text-based, pictorial), whereas those at
upper levels become more detailed with regard to the specification of the UI. On the
horizontal axis, we identify appropriate models for UI specification. Accordingly, we
differentiate between the grade of formality of the models and their purpose and ex-
pressivity. The models with a comparable right to exist are arranged at the same level.
At each stage we identify a common denominator for all three disciplines as a part of
the interactive UI specification evolving thereby.

3.1 Text-Based Notations of Needs and Requirements: Personas and Scenarios

For describing users and their needs, HCI recognizes user profiles, (user) scenarios
[23], role models [9], and personas [5]. Roles and personas are also known in SE and
BPM and are therefore appropriate for initial user-needs modeling (see Fig. 1). As an
interdisciplinary modeling language, research suggests scenarios [2] - known as user
stories (light-weight scenarios) in agile development [3]. In SE, scenarios – as a se-
quence of events triggered by the user – are generally used for requirements gathering
and for model checking. Such a scenario is used to identify a thread of usage for the
system to be constructed and to provide a description of how the system will be used.
HCI applies scenarios to describe in detail the software context, users, user roles, ac-
tivities (i.e., tasks), and interaction for a certain use-case. BE uses scenario-like narra-
tions to describe a business vision, i.e. a guess about users (customers), their activities
and interests. Starting up INSPECTOR, the user can create a scenario map to relate all

Fig. 2. Scenario map as entry stage to the modeling process (left); scenario info-bubble (right)

50 T. Memmel, J. Vanderdonckt, and H. Reiterer

scenarios that will be modeled (Fig. 2, left). The user can first describe a single sce-
nario in a bubble shape (Fig. 2, right): INSPECTOR provides a build-in text editor
with appropriate templates and enables the direct integration of existing requirement
documents into its repository. Later, the user will zoom-in and fill the scenario shape
with graphical notations and UI design.

3.2 Graphical Notations: Requirements, Usage and Behavior Modeling

Entering this stage, INSPECTOR supports the important process of translating needs
into requirements (see Fig. 1). Role maps [9] help to relate user roles to each other.

Fig. 3. Use-Case Diagram (left); Activity Diagram (right) with logic of single use case

Fig. 4. UI storyboard with UI design and models (magnified areas for illustration)

 Task Map

 UI Storyboard

 Overview

 Abstract Design

 Multi-fidelity User Interface Specifications 51

Although different in name, task cases (HCI), essential-use cases (SE), and business-
use cases (BPM) can all be expressed in a classical use-case notation (Fig. 3, left).
Moreover, use-case diagrams (SE, BE) overlap with use-case and task maps (HCI) [9].
The latter also help to separate more general cases from more specialized (essential)
sub-cases. We considered different models for task and process modeling and, follow-
ing [1], we again selected related modeling languages (see Fig. 1). Activity diagrams
(Fig. 3, right) are typically used for business-process modeling, for modeling the logic
captured by a single use-case or usage scenario, or for modeling the detailed logic of a
business rule. They are the object-oriented equivalent of flow charts and data-flow dia-
grams. They are more formal than the models HCI experts are usually familiar with,
but they therefore extend the expert’s competency in interdisciplinary modeling. Data-
flow diagrams model the flow of data through the interactive system. With a data-flow
diagram, actors can visualize how the UI will operate depending on external entities.
Typical UI storyboards we know from HCI [18] serve as the interface layer between
needs and requirement models and the UI design (Fig. 1, Fig. 4).

3.3 UI Prototyping and Simulation: Modeling Look and Feel

Prototypes are already established as a bridging technique for HCI and SE [6,24]. HCI
mainly recognizes them as an artifact for iterative UI design. Avoiding risk when
making decisions that are difficult to retract is a reason why prototyping is also im-
portant for business people. Accordingly, we chose prototypes as a vehicle for ab-
stract UI modeling. They will help to design and evaluate the UI at early stages and
they support traceability from models to design. Alternate and competing designs as
well as revised ones can all be kept in the specification landscape for later reference
and for a safe-keeping of the design rationale. The visually most expressive level is
the high-fidelity UI prototyping layer (Fig. 5, left). It serves as the executable, interac-
tive part of UI specification and makes the package complete (see Fig. 1). From here
on, the actor can later explore, create and change models by drilling down to the rele-
vant area of the UI specification. Moreover, programmers can pop-up the interactive
UI specification to get guidance on the required UI properties.

Fig. 5. INSPECTOR-made hi-fi UI design (left) in Microsoft Expression Blend (right)

52 T. Memmel, J. Vanderdonckt, and H. Reiterer

Therefore, all created UI designs can be saved in two different UIDLs that are
XML-compliant, thus demonstrating that INSPECTOR can accommodate any UIDL
in theory. On the one hand, the XAML export guarantees the reusability of the speci-
fied UIs during the development by the supplier. The XAML code can, for example,
be imported to Microsoft Expression Blend (Fig. 5, right). The XAML helps to pro-
vide simulations of the UI in a web browser such as Microsoft Internet Explorer. The
links between pages that were created with INSPECTOR then also become links in
the prototypical UI simulation. Equally important is the capability of INSPECTOR to
export the results of the process in UsiXML (www.usixml.org) [13]. In this way, it
can contribute to the early phases of needs analysis and requirements engineering: UI
designs created can be exported from INSPECTOR and imported in any other
UsiXML-compliant tool such as GrafiXML [20]. In the end, the means provided are
platform- and implementation-independent, thus making INSPECTOR compliant
with the Cameleon Reference Framework [7]. Other UIDLs could be used similarly.

3.4 Feedback and Review: Creating and Managing Annotations

In order to enable actors to attach notes to artifacts in the specification space, we have
added a feedback and review component. It can be used by actors to review the mod-
els and UI designs. Annotations can thus either be attached to objects on the canvas
freely or be linked to specific parts of a model or page (e.g., a widget). Consistent
with the ZUI interaction paradigm, the annotations can be zoomed into and accord-
ingly provide the opportunity for editing. The annotations can also be used for giving
feedback on the UI specification. When actors execute the UI simulation and explore
the underlying models, they can leave notes for the UI specification team. With color
coding, we distinguish the feedback provided with different grades of severity, rang-
ing from positive ratings (green) to critical ones (red). By summarizing the reviews of
actors in a management console, we can visualize conflicting artefacts, inconsisten-
cies and any revisions that may be needed, and we can easily support a jump zoom
navigation to the relevant models or UI designs.

3.5 Zoom-Based Traveling through the UI Specification Space

INSPECTOR is based on the metaphor of a whiteboard, which is a quite common tool
in collaborative design environments. Because of our own experience and that of oth-
ers [14,21] in developing ZUIs, INSPECTOR offers panning and zooming as major
interaction techniques. In this way, it supports the principle of focus+context princi-
ple: first, the general context is identified and when it is appropriate, we can focus on
some relevant part of the context, thus giving rise to a new context and so forth. It
therefore provides users with a feeling of diving into the information space of the UI
specification whiteboard. INSPECTOR uses [4] and the appearance of its UI is based
on a linear scaling of objects (geometric zooming) and on displaying information in a
way that is dependent on the scale of the objects (semantic zooming) [25]. Automatic
zooming automatically organizes selected objects on the UI. Animated zooming sup-
ports the user in exploring the topology of an information space and in understanding
data relationships. For switching between models and UI designs, the user can manu-
ally zoom in and out and pan the canvas. Navigating between artifacts can be an ex-
tensive task, however, if objects are widespread in terms of being some distance along

 Multi-fidelity User Interface Specifications 53

Scenario Map

Interactive UI Specification

Inspector UI design

Detailed specification design

Medium-fidelity design

Abstract canonical designPersonas, User Roles

User Role Map Use Case DiagramUse Case Diagram

Task Map

Flow Chart
Essential Use Case

Activity Diagram
Data Flow Diagram

U
I

S
t
o
r
y
b
o
a
r
d

Fig. 7. Correlation of models and UI designs; exemplified modeling and design throughput

the three dimensions of the canvas (panning: x-axis, y-axis; zooming: z-axis). For a
much faster change of focus as well as for traceability and transparency, INSPECTOR
offers the possibility of creating links between models or elements of models (Fig. 7).
Scenarios are the initial model, whereas the UI storyboard functions as the mediator
between interconnected models and design. At early stages, for example, a user shape
can be linked to and be part of user roles, personas, and use-cases. Zooming-in on a
user shape reveals more details about the underlying personas. The use-case shapes can
be part of a superordinate task map and can be linked accordingly. Moreover, zooming
in a particular case could link to an essential use-case description and reveal more de-
tail on user and system responsibilities. At this stage, activity and data-flow diagrams
help to model the relationships of states, for example (Fig. 3). The user can link every
model to UI designs of different fidelity and vice versa. During modeling, or while
traversing relationships by panning and zooming, hints about the current zoom factor
and the current position in the information space can be given in order to avoid disori-
entation. A common way of supporting the user’s cognitive (i.e. spatial) map of the in-
formation space is an overview window (Fig. 4). In addition, INSPECTOR provides a

54 T. Memmel, J. Vanderdonckt, and H. Reiterer

tree-view explorer for switching between objects. This navigation support allows a
jump zoom into areas far removed from the current focus.

4 Expert Feedback and Usability Study

We have started to interview software and UI specification experts (n=12) from
Daimler AG in a questionnaire-based usability study. The participants were intro-
duced to INSPECTOR through a short demonstration, a video and a supplementary
text explaining the motivation for our approach. Each expert was provided with an in-
stallation of the tool and had two weeks to return his feedback by means of a ques-
tionnaire that was divided into 5 parts. The first part was designed to (1) identify the
field of activities of every respondent, (2) get an overview of the models and tools
typically applied, and (3) get an assessment of difficulties along the supply chain. The
second to fourth parts asked about INSPECTOR in terms of (1) the applicability of
the modeling notations, (2) the completeness of the UI design capabilities and their
practicability for UI evaluation, and (3) the assessment of the tool’s general usability
and the user experience provided. The fifth part asked if INSPECTOR could, in gen-
eral, improve the UI specification practice. Currently, half of the questionnaires have
been completed (n=6) and we can provide a first outline of the most important results.
So far, all respondents have stated that INSPECTOR, as a tool that combines models
with UI Design, contributes great value to their work style (average 4.83 pts; scale 1-5
pts). The added value was particularly identified in terms of an increased coherence of
models and design artifacts, whereby INSPECTOR enhances traceability and trans-
parency. But the study also highlighted some conceptual shortcomings. Some experts
stated that during the building of a UI design, INSPECTOR could be enhanced by a
contextual layer that gives the expert the chance to cross-check the design with under-
lying models. Instead of frequently jumping back and forth on the canvas, it should be
possible to temporarily visualize models and UI concurrently. We have started to de-
velop such a preview feature in order to further enhance the traceability of artefacts.

Other usability issues concerned the general interaction with the tool and were sim-
ilar to those found during a diary study. For the latter, we used INSPECTOR in an in-
teraction design lecture. Three groups of computer science and HCI students (n=8)
were asked to use the tool during a Volkswagen use-case study on the specification of
rear-seat entertainment systems. For a period of three weeks, every student wrote his
own diary to give insight into (1) the kind of models created, (2) additional tools that
were applied, (3) problems that occurred, (4) ratings of the user experience, (5) gen-
eral issues and opinions about the tool. We decided for the diary study in order to be
able to evaluate INSPECTOR over a longer period of time. Because we were inter-
ested in how the empirical results change with the duration and intensity of usage, we
preferred a long-term study to classical usability tests. In weekly workshops, we dis-
cussed the intermediary results and recorded the issues for subsequent correction. By
means of the diary study, we e.g. found that objects on the ZUI canvas occasionally
behaved inconsistently after the tool was used for several hours and an extended
amount of zoom operations had been performed. Students also reported issues with
integrated external documents (PDF, Word, etc.), when they repeatedly saved and
opened their projects. This led to an intensifying disarrangement of the XML structure

 Multi-fidelity User Interface Specifications 55

in saved project files and significantly prevented a fluent and enduring work style. It
would have been mere chance if we had identified these problems in a much shorter
lab-based usability study. That way, we were able to solve these issues quickly.
Moreover, we found that some participants firstly preferred to create the first abstract
prototypes with paper and pencil. We realized that the use of the built-in sketching
mechanism increased as soon as we provided a pen tablet as input device; like in [10].
Students were initially also not comfortable with all the notations provided and re-
quired assistance on their proper application. We addressed this issue by making a
start on including a help feature that guides users through the UI specification process
by explaining notations as well as their scope of application. In addition, we enhanced
the affordance of templates for e.g. personas or essential-use cases to ease the under-
standing of the artifacts. After all, the diary study and the upgrades resulted in an im-
provement of the feedback on the tool usability: rated with an average of 1.75pts (std.
0.46) (on a 5-point Likert scale) after the first week and 3pts (std. 0.00) after the sec-
ond, participants reviewed INSPECTOR with an average of 4.25pts (std. 0.46) at the
end of the study. A repeated-measure ANOVA revealed a significant main effect for
the rating across the weeks (F(2,14)=105.00, p<0.001). Furthermore the differences
between each week are also very significant statistically (week 1 vs. week 2:
F(1,7)=58.33, p<0.001; week 2 vs. week 3: F(1,7)=58.33, p<0.001).

5 Summary and Outlook

In this paper, we have introduced INSPECTOR, a collaborative design tool for shar-
ing UI designs at various levels of fidelity in order to match the requirements that
multiple actors may rely on various inputs and formats. The notion of multi-fidelity
has already been proved feasible in UI prototyping [10] and is then extended to UI re-
quirements here in a ZUI. Based on our experience in UI specification and design, we
have come to the conclusion that the typical methods and tools available are not ade-
quate. UI tools must support not only the “hard” aspects, but also the “soft” aspects of
UI development to support the delivery of usable and innovative systems in the future
[8]. These include support for creativity and improvisation. With our experimental
tool-support, actors are supported in applying informal models they are familiar with,
and are given the opportunity of UI prototyping with different fidelities. Being logi-
cally linked, transitions from abstract to detailed artifacts increase the transparency of
design decisions and enhance the traceability of dependencies. This improves com-
munication, consistency, and lastly, the necessary understanding of the overall prob-
lem space that has to be made accessible through an innovative UI. Based on a ZUI
approach, our INSPECTOR tool integrates and innovatively interconnects the re-
quired artifacts in an interactive UI specification that serves as a living repository of
the design rationale. With our approach, we focus on actors in charge of the concep-
tualization, and particularly the specification, of UIs. We therefore do not support the
automatic generation of the final UI like in [7], but the exchangeability of the overall
specification as well as the sophisticated UI designs in machine-readable format. We
will continue to enhance our tool in order to make it a fully capable and scalable al-
ternative to the tool-landscape applied in current industrial practice.

56 T. Memmel, J. Vanderdonckt, and H. Reiterer

References

1. Ambler, S.W.: Agile Modeling. John Wiley & Sons, New York (2002)
2. Barbosa, S.D.J., Paula, M.G.: Interaction Modelling as a Binding Thread in the Software

Development Process. In: Proc. of the ICSE 2003 Workshop on bridging the gaps between
software engineering and human-computer interaction SEHCI 2003, IFIP, May 3-4, 2003,
pp. 84–91 (2003)

3. Beck, K.: Extreme Programming Explained. Addison-Wesley, Reading (1999)
4. Bederson, B.B., Grosjean, J., Meyer, J.: Toolkit Design for Interactive Structured Graph-

ics. IEEE Transactions on Software Engineering 30(8), 535–546 (2004)
5. Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centered Systems. Mor-

gan Kaufmann, San Francisco (1998)
6. Blomkvist, S.: Towards a model for bridging agile development and user-centered design.

In: Seffah, A., Gulliksen, J., Desmarais, M.C. (eds.) Human-centered software engineering
– Integrating usability in the development process. Human-computer Interaction Seires,
pp. 219–244. Springer, Berlin (2005)

7. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with Com-
puters 15(3), 289–308 (2003)

8. Campos, P., Nunes, N.: Towards useful and usable interaction design tools: CanonSketch.
Interacting with Computers 19(5-6), 597–613 (2007)

9. Constantine, L.L., Lockwood, L.A.D.: Software for Use: A Practical Guide to Models and
Methods of Usage-Centered Design. Addison-Wesley, Reading (1999)

10. Coyette, A., Kieffer, S., Vanderdonckt, J.: Multi-Fidelity Prototyping of User Interfaces.
In: Baranauskas, C., Palanque, P., Abascal, J., Barbosa, S.D.J. (eds.) INTERACT 2007.
LNCS, vol. 4663, pp. 149–162. Springer, Heidelberg (2007)

11. Elnaffar, S., Graham, N.C.: Semi-Automated Linking of User Interface Design Artifacts.
In: Proc. of 3rd Int. Conf. CADUI 1999, pp. 127–138. Kluwer Academic Publisher,
Dordrecht (1999)

12. Holt, J.: A Pragmatic Guide to Business Process Modelling. British Computer Society,
United Kingdom (2005)

13. Limbourg, Q., Vanderdonckt, J.: Addressing the Mapping Problem in User Interface De-
sign with UsiXML. In: Proc. of 3rd Int. Workshop on Task Models and Diagrams for user
interface design TAMODIA 2004, pp. 155–163. ACM Press, New York (2004)

14. Lin, J., Landay, J.A.: Damask: A Tool for Early-Stage Design and Prototyping of Multi-
Device User Interfaces. In: Proc. of the 8th Int. Conf. on Distributed Multimedia Systems,
San Francisco, pp. 573–580 (2002)

15. McCurdy, M., Connors, C., Pyrzak, G., Kanefsky, B., Vera, A.: Breaking the Fidelity Bar-
rier: An Examination of our Current Characterization of Prototypes and an Example of a
Mixed-Fidelity Success. In: Proc. of CHI 2006, pp. 1233–1242. ACM Press, New York
(2006)

16. Memmel, T., Bock, C., Reiterer, H.: Model-driven prototyping for corporate software
specification. In: Harning, M.B., Gulliksen, J. (eds.) Proc. of the Engineering Interactive
Systems Conference EIS 2007, Salamanca, March 22-24, 2007. Springer, Berlin (2007)

17. Memmel, T., Gundelsweiler, F., Reiterer, H.: Agile Human-Centered Software Engineer-
ing. In: Proc. of the 21st BCS Conf. on Human-Computer Interaction HCI 2007, pp. 167–
175 (2007)

 Multi-fidelity User Interface Specifications 57

18. Memmel, T., Reiterer, H., Ziegler, H., Oed, R.: Visual Specification as Enhancement of
Client Authority in Designing Interactive Systems. In: Roese, K., Brau, H. (eds.) Proc. of
the 5th Workshop of the German Chapter of the Usability Professionals Association, pp.
99–104. Frauenhofer IRB Verlag, Stuttgart (2007)

19. Metzker, E., Reiterer, H.: Evidence-Based Usability Engineering. In: Proc. of the 4th Int.
Conf. on Computer-Aided Design of UIs CADUI 2002, pp. 323–336. Kluwer Acad.,
Dordrecht (2002)

20. Michotte, B., Vanderdonckt, J.: GrafiXML, A Multi-Target User Interface Builder based
on UsiXML. In: Proc. of 4th Int. Conf. on Autonomic and Autonomous Systems ICAS
2008, Gosier, March 16-21, 2008. IEEE Comp. Soc. Press, Los Alamitos (2008)

21. Newman, N.W., Jason, J.L., Hong, I., Landay, J.A.: DENIM: An Informal Web Site De-
sign Tool Inspired by Observations of Practice. J. Human-Comp. Int. 18(3), 259–324
(2003)

22. Petrie, J.N., Schneider, K.A.: Mixed-fidelity Prototyping of User Interfaces. In: Proc. of
DSV-IS 2006, pp. 199–212. Springer, Heidelberg (2006)

23. Rosson, M.B., Carroll, J.M.: Usability Engineering: scenario-based development of human
computer interaction. Morgan Kaufmann, San Francisco (2002)

24. Sutcliffe, A.G.: Convergence or competition between software engineering and human
computer interaction. In: Seffah, A., Gulliksen, J., Desmarais, M.C. (eds.) Human-centered
software engineering – Integrating usability in the development process. Human-Computer
Interaction Series, pp. 71–84. Springer, Berlin (2005)

25. Ware, C.: Information Visualization: Perception for Design. Morgan Kaufmann, San Fran-
cisco (2004)

26. Zave, P., Jackson, M.: Four Dark Corners of Requirements Engineering. ACM Transac-
tions on Software Engineering and Methodology 6(1), 1–30 (1997)

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 58–71, 2008.
© Springer-Verlag Berlin Heidelberg 2008

HOPS: A Prototypical Specification Tool for
Interactive Systems

Anke Dittmar, Toralf Hübner, and Peter Forbrig

Rostock University, 18055 Rostock, Germany
{anke.dittmar,toralf.huebner,peter.forbrig}@uni-rostock.de

Abstract. This article suggests higher-order processes as a formal framework to
model interactive systems and supplies a corresponding prototypical specifi-
cation tool (HOPS). Processes and their components reflect the recursive nature
of interaction. Each component is an independent process itself. Though higher-
level processes specify the interaction between their components they do not
fully control them. HOPS offers a unified description of behavioral and struc-
tural aspects. Structured sets of sub-processes (e.g. hierarchies) serve to repre-
sent specific domains of interest within a process. Operations are the smallest
units for analyzing and designing behavior. However, they can be unfolded to
processes and vice versa. This supports an understanding of interactive systems
as open and nonmonotonic systems. Their composition/ decomposition may ex-
hibit unpredictable behavior. It is shown that the approach follows the interac-
tion paradigm more closely than existing modeling approaches in HCI. Possible
usage scenarios are given.

1 Introduction

Systems serve to analyze behavior that exists and can be experienced by senses as
well as to establish such behavior. We know ecosystems, economic systems, comput-
ing systems, cognitive systems and so on. In our approach, a system is seen as
consisting of interacting parts which can be characterized as interactive systems them-
selves. Due to this recursive nature, sub-systems can exist independently and have
similar properties as the whole system but in a simpler form. According to Wegner,
“interactive systems interact with an external environment they cannot control” [1].
Hence, the interaction paradigm supports the idea of openness and nonmonotonicity.
A decomposition may create unpredictable sub-systems. A composition of sub-
systems may produce noninteractive behavior [1]. It may also produce new behavior
at a higher level of organization.

This paper introduces HOPS as a prototypical tool to describe and animate interac-
tive systems. HOPS stands for Higher-Order Processes Specification formalism. It is
based on preliminary work presented in [2]. The concept of higher-order processes
facilitates a unified behavioral and structural description of interactive systems as
requested e.g. in [3]. Sub-systems are specified by lower-level processes which con-
stitute the components of higher-level ones. However, an enclosing process does not
fully control the specific behavior of its environment but focuses on those aspects that
seem to be relevant for the interaction between its components. This and the fluid

 HOPS: A Prototypical Specification Tool for Interactive Systems 59

boundary between processes and operations as smallest units to analyze and design
behavior support the description of open systems and acknowledge incomplete and
not necessarily consistent descriptions as they are typical for the interaction paradigm.
In addition, a process is characterized by its set of sub-processes allowing a shift of
focus. Sub-processes mainly serve two purposes. First, they are used to specify
changes in the environment caused by operations. Second, they facilitate the elabora-
tion and description of specialized sub-structures or particular domains of interest.

In the next section, the application of HOPS is illustrated by a small example. Sect.
3.1 introduces the conceptual framework to model interaction. In Sect. 3.2, HOPS is
proposed as supporting specification mechanism. It is shown that it facilitates differ-
ent specification styles. Sect. 4 is about influences on the suggested approach. In Sect.
5, possible usage scenarios are sketched, and Sect. 6 draws some conclusions and
proposes directions for future work.

2 A Motivating Example

Listing 1 shows the HOPS-specification of a basic process Bool. It has no components
but two operations true and false (lines 3, 4). Line 6 says that the process either be-
haves like sub-process T or like F. Generally, the behavior is described by a collection
of alternative sequences of operations. Here, T is characterized by one infinite se-
quence: 〈false,true,false,true,false,…〉. F behaves similarly but starts with true (lines
7, 8). The basic process Entry_1 in Listing 2 defines operations init, edit, and finish.
The equation in line 7 specifies the set {〈init,finish〉, 〈init,edit,finish〉,
〈init,edit,edit,finish〉,...} as the focused behavior of Entry_1.

 Listing 1. Bool.pr Listing 2. Entry_1.pr

Let us continue with the more complex specification in Listing 3. Process Space
has two components called visible and icon (lines 5, 6). Both are Bool processes. Fur-
thermore, Space defines a number of new operations: init, add, remove, finish, show,
hide, iconify, deiconify, action (lines 8-21). The definition of an operation can include
a pre and post-condition as well as an operationalization part:

op_name: <{precondition},{post condition}> = operationalization.

Conditions are state descriptions of components of the actual process. For example,
sub-process T of Bool represents a state ‘True’ (denoted as T(Bool)) while F(Bool)
represents a state ‘False’. The precondition in line 21 says that action is enabled if
visible is in state ‘True’ and icon in ‘False’. As another example, operation deiconify
is executable if the space is visible but an icon (line 19).

60 A. Dittmar, T. Hübner, and P. Forbrig

 Listing 3. Space.pr

Fig. 1. An interactive animation of process Space: 〈init,add,show,iconify,hide,finish〉

Operations and partial equations describe the interaction between components. In
Listing 3, all operations of the components are bound in operationalization parts of
new defined operations. The equation in lines 24-26 specifies valid sequences of op-
erations (with ‘;’ as sequential operator, ‘[]’ for alternatives, and ‘*’ for iterations).
However, some of them are excluded by preconditions. Though 〈init,iconify,finish〉 is
valid according to the equation it violates the precondition of iconify because com-
ponent visible would be in state F(Bool).

In addition, operationalization parts of operations can contain ‘foreign code’ (de-
noted by ‘fCall’). In this example, methods of a Java-class PSpace are used to create a

 HOPS: A Prototypical Specification Tool for Interactive Systems 61

Fig. 2. Process Pres: two spaces c1 and c2 and one entry moving between them

frame in operation init, to show it, to hide it (lines 9, 14, 16), and so on. A command-
line interactive animation of the process is depicted in Fig. 1. In each step, the user is
given a set of enabled operations where they can choose from. For convenience, the
animation run is represented in four columns and user inputs are in bold. Some side
effects of foreign calls are indicated. By entering ‘h’, the user can see the actual se-
quence of operations (step 7).

Now, let us imagine how two spaces and one entry process could interact in a ‘rea-
sonable’ way. Entries serve to enter and display text. However, they need to be lo-
cated in a space in order to be editable. As described above, spaces can be created,
shown, hidden, iconified, and deiconified. They are able to ‘host’ entities like entries
(by operations add and remove). If they are visible and not presented as an icon they
allow actions (by operation action). This understanding may be illustrated in Fig. 2. It
represents side effects of the following animation run of process Pres with compo-
nents c1, c2, e (Listing 4):

〈init, c1.show, c2.show, *1* add_to_c1, edit_in_c1, *2* move_to_c2,
move_to_c2, edit_in_c2, *3* c2.hide, move_to_c1, *4* finish〉

1, *2*,... are reference points to the situations depicted in the figure.

 Listing 4. Pres.pr

62 A. Dittmar, T. Hübner, and P. Forbrig

Let us take a closer look at process Pres. First, it is important to note that the initial
behavior of every process is determined by the concurrent running of its components.
(Entry is defined like Entry_1 in Listing 2 but extended by ‘foreign code’.) As already
mentioned, interactive operations and partial equations restrict this behavior (e.g. by
coordination). Operation init is an operationalization of a sequence of init-operations
of components e, c1, c2 (denoted by ‘<<…>>’, line 11). That is to say, this sequence
happens without interruption. However, it also says that the appropriate components
must be in a state that enables their init-operations. As another example, edit_in_c1
can only be performed if entry e is able to perform operation edit and operation action
is enabled by component c1. In addition, the precondition of edit_in_c1 must be satis-
fied: component in_c1 must be in state ‘True’ (line 21). Process Pres knows the fol-
lowing operations of its components:

e: init, edit, finish,
c1,c2: init, finish, add, remove, action,
in_c1: true, false.

All of them are bound in operationalization parts. However, the process does not
know the operations show, hide, iconify, and deiconify of c1 and c2. Their execution
is not constrained. To illustrate this point, we assume that init has already been per-
formed in a running animation. Now, we have the following situation:

enabled operations: add_to_c1, c1.show, c2.show.
Operation add_to_c1 is enabled according to line 25 in Listing 4. However, the exe-
cution of operation init included the execution of c1.init and c2.init. This enables
operations c1.show and c2.show (see Listing 3) though they are not in the focus of
process Pres. Just to make it more clear, we continue the animation. After performing
add_to_c1 and c1.show we get the situation:

enabled operations: move_to_c2, edit_in_c1, finish, c1.hide, c1.iconify, c2.show.
It becomes apparent that process Pres concentrates on describing how to move the
entry between both spaces and how to make it editable in a space. However, a possi-
ble hiding or iconifying of a space is not considered anymore at this level.

3 Modeling Interaction

“Whenever we capture the complexity of the real world in formal structures, whether
language, social structures, or computer systems, we are creating discrete tokens for
continuous and fluid phenomena.” [4]

3.1 Conceptual Basis of HOPS: Higher-Order Processes

Operations and Processes Operations are names to refer to phenomena.1 They do not
explain how changes occur. They have no inner structure but are seen as ‘atomic’, as
happening without interruption. Processes are abstractions over operations. They have
a structure and interruption is inherent to them. In the simplest case, a process defines
one operation o and the focused behavior can be described by the sequence 〈o〉. Such

1 Interaction may be a more appropriate term. We chose operation in order not to interfere with

the name the underlying paradigm.

 HOPS: A Prototypical Specification Tool for Interactive Systems 63

processes represent the transition from operations to processes and vice versa. Higher-
level processes contain components which are processes themselves. On the one
hand, an enclosing process describes the interaction of its components. On the other
hand, they constitute its environment. A higher-order process only focuses on those
operations which seem to be relevant for the interaction. It can define new operations
and operationalize sequences of operations of components. Again, the behavior a
process concentrates on is given by a collection of alternative sequences of operations
known to it. Pre- and post-conditions assigned to interactive operations can constrain
the behavior. They specify the state of the environment before and after an operation
occurs. A condition is expressed as a set of sub-processes of components.

Sub-Processes Let P be a process with an initial focus on the set OpsP of operations
and the set BehP ⊆ OpsP

* of alternative sequences. A process S with corresponding
OpsS and BehS ⊆ OpsS

* is a sub-process of P if 2

- OpsP ⊆ OpsS
- ∀ seqS ∈ BehS ∃ seqP ∈ BehP: seqS |

\ OpsP = seqP

Take note that each process is a sub-process of itself. In the sequel, a sub-process S of
a process P is denoted by S(P). It has two main characteristics.

- It describes a partial behavior of P.
- It introduces operations which were not in the focus of P.

We use these features for two purposes: for describing states and their manipulation
by operations, and for embedding a set of processes in a common context or in a do-
main of interest.

- We say a process P is in state S1(P) if it currently allows the partial behavior
specified by S1(P). An operation can change this state by enabling another partial
behavior S2(P).

- A process P can work as context of processes S1,...,Sn (n∈ Nat) if it abstracts
from specific operations of Si (i=1,...,n) but concentrates on their common be-
havior and structure. Then, S1,...,Sn become sub-processes of P. A common con-
text could be a context of use as in the example in the next section.

The following definition makes a distinction between basic and additional compo-
nents to support the specification of structured sets of sub-processes.

Definition 1 (higher-order process - intensional description)

A process P is a 5-tuple (Cb, Cadd, Ops, Sub, Beh) with
- Cb ∪ Cadd is the finite set of components of P (Cb ∩ Cadd = ∅).

- Each component ci:Pi consists of an identifier ci and a sub-process Pi.
- Cb is the set of basic components.
- Cadd is the set of additional components.

- Ops = Opsb ∪ Opsadd ∪ Opsn is the set of operations known to P where

2 Restriction: seq |\ Ops is the sequence of operations one gets by omitting all operations from

seq which are not in Ops, e.g. 〈a,b,a,c,b,d,c〉 |\ {a,c} = 〈a,a,c,c〉.

64 A. Dittmar, T. Hübner, and P. Forbrig

- Opsb = {ci.opij
 | ci:Pi ∈ Cb ∧ opij

 ∈ OpsPi
} is the set of operations of ba-

sic components which are in the initial focus of P.
- Opsadd = {ci.opij

 | ci:Pi ∈ Cadd ∧ opij
 ∈ OpsPi

} is the set of operations of

additional components introduced by sub-processes of P.
- Opsn is the set of operations defined by P. An operation is a 4-tuple

(op,PreCond,PostCond,OpSeq) with

- op is the identifier of the operation.
- The pre- and post-condition PreCond and PostCond are possibly empty

sets of components in restricted forms. A restricted form of ci:Pi is a pair
ci:S(Pi) with S(Pi) is a sub-process of Pi.

- OpSeq ∈ (Opsb ∪ Opsadd)
* is the operationalization part.

- Sub is the set of sub-processes of P. The following conditions must be satisfied
for each S : (Cb

S, Cadd
S, OpsS, SubS, BehS) ∈ Sub.

- Each component ci:Pi ∈ Cb occurs in Cb
S in a possibly restricted form.

- Each component of Cb
S is a possibly restricted form of a component of

Cb ∪ Cadd.
- OpsS ⊆ Ops is the set of operations known to S.

- Beh ⊆ Ops* is the set of alternative sequences of operations of P.

A process P describes a behavior by a set Beh of alternative sequences of operations
known to it. For simplicity, we refer to Beh as the behavior of P. However, take note
that processes do not know all operations of their components. Furthermore, we al-
ready mentioned that a fluent boundary between processes and operations is assumed.
Processes can be folded to operations by appropriate operationalizations. The other
way around, operations can be unfolded to processes to explore them more deeply.
The assumption that a process can only be a focused description of certain aspects of
a phenomenon implies that a more thorough analysis (or design) of operations and
lower-level descriptions can exhibit unexpected behavior. The same might be true if
processes are seen as interacting parts of an enclosing process. This idea is reflected
to a certain extent in the following extensional description of higher-order processes.
A process partly knows its components to describe their interaction but otherwise has
no influence on any kind of behavior.

Definition 2 (higher-order process - extensional description)

Let P = (Cb, Cadd, Ops, Sub, Beh) be a process. The extensional description of P com-
prises each sequence seq of operations with seq |\ Ops ∈ Beh.

3.2 The Specification Formalism HOPS

HOPS is a prototypical implementation of higher-order processes. It allows text-based
specifications and their animation. Throughout this section we use a second example
for illustration. Specifications consist of a process identifier and possibly empty lists
of basic components, additional components, operation definitions, and partial equa-
tions. For brevity, EBNF-rules below show a simplified syntax. They ignore e.g. sepa-
rators and priorities of operators in equations.

 HOPS: A Prototypical Specification Tool for Interactive Systems 65

 Process := PROCESS Id2 [USES FSource*][BASIC COMPS Comp*]
 [ADDITIONAL COMPS Comp*] [OPS Op*]

 [SUB PROCESSES PartEqu*] END PROCESS ;

 Comp := Id : SubProc ;

 Op := Id : < { Comp* } , { Comp* } > [= OpDef] ;
 OpDef := Instr | << Instr* >> ;

 Instr := Id . Id | ForeignCall ;
 PartEqu := Id2 = Expr ;

 Expr := [NOT] Factor [* | +] | Expr BinOp Expr ;

 Factor := [Expr] | (Expr) | Id (. Id)* | Id2 ;
 BinOp := [] | ||| | ; | XOR | AND | OR ;

 SubProc := Id2 [(Id2)]

Initial behaviour Initially, the behavior of a process is implicitly determined by the
concurrent (uncoordinated) composition of the basic components. Listing 6 shows
process Vehicle_1 with three basic components and an additional one. Process Engine
is defined in Listing 5. Component doors knows operations open and close. It behaves
similarly to Bool processes as mentioned in Sect. 2. The initial behavior may be illus-
trated by the animation run in Fig. 3. Animations concentrate on operations of basic
components only. They abstract from the occurrence of any other operations includ-
ing those of additional components. Theoretically, such operations could happen at
each animation step (see Def. 2).

 Listing 5. Engine.pr Listing 6. Vehicle_1.pr

Fig. 3. An animation of Vehicle_1: 〈doors.close,running.true,doors.open,...〉

Partial equations and operations Partial equations help to describe structures of
sub-processes like hierarchies more conveniently. The name of the sub-process is
given on the left-hand side of an equation. The expression on the right-hand side con-
sists of sub-processes, operations and predefined operators. A process implicitly knows
all operations of its components which either occur in operationalization parts or in
partial equations. While Vehicle in Listing 7 knows all operations of its components,

66 A. Dittmar, T. Hübner, and P. Forbrig

process Pres in the introductory example focuses on some only. Operations and partial
equations influence the initial behavior.

- Operationalizations require uninterrupted sub-sequences of operations.
- Preconditions of operations reject some formerly valid sequences.
- Operators in partial equations restrict a behavior in two ways:

- behavioral operators compose valid sequences,
- structural operators combine different sets of valid sequences.

 Listing 7. Part of Vehicle.pr

In the following, E, E1, E2 are expressions in partial equations of P with known op-
erations OpsE... and behaviours BehE..., ^/2 is the concatenation operator.

Behavioral operators:

sequence: Beh (E1 ; E2) = { s1 ^ s2 | (s1 ∈ BehE1
) ∧ (s2 ∈ BehE2

) }

concurrency: Beh (E1 ||| E2) = { s11
^ s21

^ s12
^...^ s1n

^ s2n
 |

 (s11
^ s12

^...^ s1n
 ∈ BehE1

) ∧ (s21
^ s22

^...^ s2n
 ∈ BehE2

) }

alternative: Beh (E1 [] E2) = { s | s ∈ BehE1
 ∨ s ∈ BehE2

 }

iteration: E* = (E ; E*) [] Done
option: [E] = E [] Done

Structural operators:

AND: Beh (E1 AND E2) = { s | s ∈ (OpsE1
∪ OpsE2

)* ∧ (s |\ OpsE1
∈ BehE1

)

 ∧ (s |\ OpsE2
∈ BehE2

) }

OR: Beh (E1 OR E2) = { s | s ∈ (OpsE1
∪ OpsE2

)* ∧ ((s |\ OpsE1
∈ BehE1

)

 ∨ (s |\ OpsE2
∈ BehE2

)) }

 HOPS: A Prototypical Specification Tool for Interactive Systems 67

XOR: E1 XOR E2 = E1 [] E2
NOT: Beh (NOT E) = { s | s ∈ BehP ∧ ¬ (s |\ OpsE

∈ BehE) }

In the example, the general behavior of vehicles is characterized by sequences
〈park〉, 〈start,stop,park〉, 〈start,stop,open_door,close_door,park〉… (line 21). Precon-
ditions exclude some sequences. For example, the precondition of open_door would
be violated by sequences 〈start, open_door,...〉. Vehicles are described more precisely
by the equation in line 20. They are either trams or busses, and hence also show some
specific behavior. Trams perform operations collector_up, collector_down, and ring
in orders as described in line 24 and so on. Again, preconditions exclude some se-
quences which would be valid according to the partial equations only.

Foreign code HOPS allows to perform ‘foreign code’ within the execution of op-
erations. Since the interpreter is implemented in SWI-Prolog, we have so far experi-
mented with Java (by using JPL) and Prolog.3 A foreign call has two parameters: the
list of interacting components, and the call itself (see e.g. Listings 3, 4). A mapping
between HOPS components and Java objects is implemented. This may be illustrated
in Fig. 2. The spaces c1 and c2 of the root process are mapped to Java containers with
the component identifiers as titles. Foreign code is not considered in Sect. 3.1, but
there are several ‘pragmatic’ reasons to include it into HOPS.

- Foreign code can represent parts of a system we abstract from by HOPS-
operations. Post-conditions of HOPS operations can describe (expected) effects
of foreign calls. Hence, HOPS-specifications could help to analyze and develop
applications in a structured but at the same time experimental way.

- Foreign code supports a richer illustration of and richer interaction with anima-
tions of HOPS-specifications as indicated in Fig. 1 and 2.

- It helps to convey our understanding of interactive systems as open systems.

Supported modeling styles The HOPS notation supports top-down as well as bot-
tom-up thinking. The initial behavior of a process constrains the behavior of sub-
processes (top down). However, the way sub-processes are composed and combined
also influences the behavior of the whole process and extends its focus (bottom up). A
vehicle is either a tram or a bus (a combination). Hence, a vehicle can ring or honk
but it cannot do both (Listing 7). A person could first be a child and then an adult (a
composition: Person=Child ; Adult) and so on. Sub-processes allow to build special-
ized structures like hierarchies.

Furthermore, HOPS-specifications are hybrid in the sense that they allow to ex-
press structural and behavioral knowledge in a unified way. This knowledge does not
need to be consistent. It can happen that the behavior of a process P is empty
(BehP=∅) if conditions of operations exclude all valid sequences derived by the par-
tial equations of P. However, human knowledge is never ‘fully consistent’ and needs
to be constantly reconsidered. Yet, a hybrid notation leads to more concise and proba-
bly more ‘natural’ descriptions than pure state or temporal notations as we have
pointed out in [5] at the example of TaOSpec.

3 http://www.swi-prolog.org, http://www.swi-prolog.org/packages/jpl/

68 A. Dittmar, T. Hübner, and P. Forbrig

4 Influences on This Work

The paper is to be seen in the context of the author’s previous work (e.g. [6], [5], [7]).
It is rooted in task analysis and modeling (e.g. TKS [8], CTT [9], GTA [10]) and in
the specification of interactive systems (from formalisms like [11], [12], [13] to
model-based approaches as in [14], [15], [16]). It is based on process algebras (CSP
[17], CCS [18]) and their use in hybrid notations as well as on object-oriented ideas.
However, this work is also rooted in a broader review of HCI literature about interac-
tion and about human activity ([19], [20], [21] to name a few sources). Though the
focus is on a formal description of interaction and corresponding specification tools
the authors are conscious of the limitations of this approach. For example, one will
never fully understand the fluid boundaries between planned human (inter-)actions
and sub-conscious habits. And yet, the proposed folding and unfolding of processes
and operations may be a reflection. Like any other artifact, formal frameworks allow
us to see ‘things’ in the world we wouldn’t see otherwise. Appropriate tools allow us
to act accordingly. It is, perhaps, more a question of not to be ‘caught in an artifact’
but to be open to enrich it and to see limitations in its applicability.

A thought in [22] had much influence on our way to describe interaction. It is cer-
tainly expressed by other authors as well. Vygotski pointed out that there are mainly
two ways to analyze phenomena. One can decompose a whole system into elements,
or one can look for smallest units of analysis which can exist independently and can
be combined. Elements in the first approach have a different quality than the whole.
Hence, all properties of the system can only be explained by ‘artificial’ associative
links between sub-parts. In contrast, units already have all characteristics of the whole
but at a lower level of organization. Vygotski uses water for a comparison. Why does
water extinguishes fire? If we decompose water into the elements oxygen and hydro-
gen we hardly find an answer. Hydrogen burns and oxygen facilitates burning. But if
we look at the molecules and their interaction (molecular movement) we might be
more successful.

In the analysis and the design of interactive systems we find both approaches. Ar-
chitectural models like the Seeheim model or the arch model deal with specialized
sub-structures which cannot exist independently. Almost all task-based design ap-
proaches distinguish between task models, dialog models, presentation models, appli-
cation models etc. and consider associations between model elements. Interactors
([13] as an example already mentioned above) are, perhaps, one of those approaches
which look for autonomous units. According to [3], the behavior of interactors “can,
in principle, be mathematically described in terms of the lower order interactors of
which...[they] are composed”. Higher-order processes can be considered as inter-
actors. However, they follow the interaction paradigm more closely as shown in the
next section.

The suggested approach supports both a thinking in units, and in elements. Opera-
tions are the smallest units of analysis and synthesis. They refer to uninterrupted parts
of behavior over time. Processes are abstractions over operations and are character-
ized by interruption. The proposed intensional and extensional process definitions and
the concept of de-/operationalization support the idea of fluid boundaries between

 HOPS: A Prototypical Specification Tool for Interactive Systems 69

 Fig. 4. Systems of interactors, suggested in [3]

processes and operations, and so the idea of open, nonmonotonic systems.4 Hence,
HOPS has a quite different semantics than specification formalisms mentioned above.
Even though sub-processes are specified in a similar style. To deal with focused be-
havior is not the same as to deal with hidden behavior (like in process algebras). To
hide ‘something’ means that one has to know it, but a focus on ‘something’ says noth-
ing about the rest. Interacting components may be seen as partly independent, ‘active’
attributes of processes. We believe that the suggested approach supports the exten-
sion, refinement, and adaptation of processes as inherently incomplete descriptions of
interactive systems whether used for analysis or synthesis purposes.

5 Elaboration of Usage Patterns

Barnard et al ask for a stronger inte-
gration of HCI theories of different
sub-domains and propose the devel-
opment of generic representations of
‘systems of interactors’ [3]. Their
abstract view on such representations
is depicted in Fig. 4. Interactors re-
present Type 1-theories (knowledge in
a specific sub-domain). They are
hierarchically organized from the
higher-order assembly (A), to basic
units of meaning (B), down to the level of constituent interactors (C). So called Type
2-theories are introduced to describe the interaction between different sub-systems.
They are seen as “mapping from the macrotheory of one level of explanation into the
microtheory of another and vice versa” [3]. Such mappings are indicated in Fig. 4 by
dashed arcs between interactors at different levels of abstraction. In our approach,
higher-order processes describe both Type 1- and Type 2-theories. Their components
represent the interactive sub-systems. Hence, Type 2-theories fit the interaction para-
digm and are not mere links between elements of Type 1-theories.

Fig. 5 exemplarily shows our idea. Three processes are sketched: a task model to
describe user tasks, an application model to describe the functional core of a software
application, and a UI model to describe the interaction between the users and the
application. Hierarchies of sub-processes are used to structure each model. In the
example, we assume that sub-task (sub-process) T2 is supported by the application,
or, more precisely, by a part of the functional core which is described by sub-process
F1. Hence, the UI process contains two components tm:T2(T) and am:F1(F) and

4 According to [1], a decomposition of nonmonotonic systems may create interactive unpredic-

table systems while a composition may produce noninteractive algorithms. A simple example
in HOPS would be a process R with two components c1:P, c2:Q, an operation r = <<c1.p1;
c1.p2; c2.q>> and the partial equation R=r. P and Q are assumed to be basic processes with
P = (p1 [] p2)* and Q = q*. While R embodies an algorithm (operation r), an isolated running
of P or Q exhibits interactive behavior.

70 A. Dittmar, T. Hübner, and P. Forbrig

Fig. 5. Dynamic relation between tasks and functions

models the interaction between a user who wants to accomplish sub-task T2 and the
technical system. Of course, further differentiation is possible. For instance, separate
processes could describe knowledge about presentation aspects or about control aspects
of dialogues. This could help to follow architectural patterns like the PAC model [23].

However, we chose the example situation in Fig. 5 to draw attention to the often
neglected dynamic relation between tasks and functions of an application. It is a tru-
ism that the way how people perform tasks is evolving, sometimes in an unpredictable
way. (Interaction means openness!) What happens, for example, if people get a deeper
understanding of task T2? They may wish a more subtle support by the application,
and so the application model and the UI model need to be refined or even modified to
improve the quality of the system. However, most modeling approaches in HCI as-
sume a fixed functional core and concentrate on problems like multiple repre-
sentations, distributed interfaces etc.

6 Conclusions and Future Work

This paper introduces the prototypical specification tool HOPS and its conceptual basis
as means to analyze and design systems according to the interaction paradigm. The
suggested approach offers a unified description of behavioral and structural aspects.
This was illustrated through a couple of examples. It acknowledges the openness of
interactive systems and supports the idea of design as an ongoing intervention process.

So far, HOPS served as a tool to explore and experiment with the idea of higher-
order processes and to elaborate first usage patterns. In the future, we would like to
prove the applicability of the approach to the analysis and the design of systems more
deeply. Chatty requires in [24] that architectural issues of interactive software are
already addressed at the level of programming languages. It may be interesting to
investigate which specifications styles for describing architectural and implementa-
tional decisions can be supported by HOPS. Further versions of the tool might include
reasoning mechanisms for detecting inconsistencies in parts of specifications, more
elaborated operationalization mechanisms, and a parameter concept.

References

1. Wegner, P.: Why interaction is more powerful than algorithms. Comm. ACM 40(5) (1997)
2. Dittmar, A., Forbrig, P.: A unified description formalism for complex HCI-systems. In:

Proc. of SEFM 2005. IEEE Computer Society, Los Alamitos (2005)

 HOPS: A Prototypical Specification Tool for Interactive Systems 71

3. Barnard, P., May, J., Duke, D., Duce, D.: Systems, Interactions and Macrotheory. ACM
Transactions on Human-Computer Interaction 7, 222–262 (2000)

4. Dix, A.: Upside-Down ∀s and Algorithms - Computational Formalisms and Theory. In:
Carroll, J. (ed.) HCI Models, Theories, and Frameworks - Toward a Multidisciplinary Sci-
ence, Morgan Kaufmann, San Francisco (2003)

5. Dittmar, A., Forbrig, P.: The Influence of Improved Task Models on Dialogues. In: Proc.
of CADUI 2004. Kluwer Academic Publishers, Dordrecht (2004)

6. Dittmar, A., Forbrig, P.: Higher-Order Task Models. In: Jorge, J.A., Jardim Nunes, N.,
Falcão e Cunha, J. (eds.) DSV-IS 2003. LNCS, vol. 2844. Springer, Heidelberg (2003)

7. Dittmar, A., Gellendin, A., Forbrig, P.: Requirements Elicitation and Elaboration in Task-
Based Design Needs More Than Task Modelling: A Case Study. In: Coninx, K., Luyten,
K., Schneider, K.A. (eds.) TAMODIA 2006. LNCS, vol. 4385. Springer, Heidelberg
(2007)

8. Johnson, P.: Human computer interaction: psychology, task analysis, and software engi-
neering. McGraw-Hill Book Company, New York (1992)

9. Paterno, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A notation for specifying task
models. In: Proc. of INTERACT 1997 (1997)

10. Veer, G.C., van der Lenting, B.F., Bergevoet, B.A.J.: GTA: Groupware Task Analysis -
Modeling Complexity. Acta Psychologica 91, 297–322 (1996)

11. Alexander, H.: Executable Specifications as an Aid to Dialogue Design. In: Proc. of IN-
TERACT 1987. Elsevier, Amsterdam (1987)

12. Sufrin, B., He, J.: Specification, analysis and refinement of interactive processes. In: Har-
rison, M.D., Thimbleby, H. (eds.) Formal Methods in Human-Computer Interaction. Cam-
bridge University Press, Cambridge (1990)

13. Abowd, G.D.: Formal Aspects of Human-Computer Interaction. PhD thesis, Oxford Uni-
versity Computing Laboratory (1991)

14. Paterno, F.: Model-Based Design and Evaluation of Interactive Applications. Springer,
Heidelberg (2000)

15. Luyten, K., Clerckx, T., Coninx, K., Vanderdonckt, J.: Derivation of a Dialog Model from
a Tasl Model by Activity Chain Extraction. In: Jorge, J.A., Jardim Nunes, N., Falcão e
Cunha, J. (eds.) DSV-IS 2003. LNCS, vol. 2844. Springer, Heidelberg (2003)

16. Calvary, G., Coutaz, J., Thevenin, D.: A Unifying Reference Framework for the Develop-
ment of Plastic User Interfaces. In: Nigay, L., Little, M.R. (eds.) EHCI 2001. LNCS,
vol. 2254. Springer, Heidelberg (2001)

17. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs
(1985)

18. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)
19. Engeström, Y.: Learning by Expanding: An Activity-Theoretical Approach to Develop-

ment Research. PhD thesis, Orienta-Konsultit Oy, Helsinki (1987)
20. Dourish, P.: Where the Action Is. MIT Press, Cambridge (2001)
21. Kaptelinin, V., Nardi, B.A.: Acting with technology: activity theory and interaction de-

sign. MIT Press, Cambridge (2006)
22. Vygotsky, L.: Thought and Language. The MIT Press, Cambridge (1934/1986)
23. Coutaz, J.: PAC: An Object Oriented Model For Implementing User Interfaces. SIGCHI

Bull. 19(2) (1987)
24. Chatty, S.: Programs = data + algorithms + architecture: Consequences for interactive

software. In: Proc. of the 2007 joint conference on Engineering Interactive Software.
Springer, Heidelberg (2007)

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 72– 85, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Systematic Analysis of Control Panel Interfaces
Using Formal Tools

J. Creissac Campos1
 and M. D. Harrison2

1 Department of Informatics/CCTC, Universidade do Minho, Braga, Portugal
Jose.Campos@di.uminho.pt

2 School of Computing Science, Newcastle University, UK
Michael.Harrison@ncl.ac.uk

Abstract. The paper explores the role that formal modeling may play in aiding
the visualization and implementation of usability requirements of a control panel.
We propose that this form of analysis should become a systematic and routine as-
pect of the development of such interfaces. We use a notation for describing the
interface that is convenient to use by software engineers, and describe a set of
tools designed to make the process systematic and exhaustive.

1 Introduction

Applying formal techniques to analyze interactive systems makes possible a more
systematic approach to the evaluation of the usability of a new design. Formal tech-
niques can provide an incisive analysis that is effective in uncovering potential un-
foreseen interaction problems which can then be explored from a usability perspec-
tive. The paper demonstrates how a collection of tool supported property patterns
(akin to those described in [12]) can be used to make this process more systematic.
The interface under analysis is specified using Modal Action Logic (MAL) which fo-
cuses on the meaning and effect of action. The approach is illustrated by analyzing the
air conditioning system for a family car. In addition to potential usability problems,
the patterns help discover discrepancies between assumed meanings based on the user
manual and meanings derived by experimenting with the system.

The proposed techniques are similar in aim to those of [5] and [14]. MAUI [9] is a
comparable tool supported technique for analyzing control panel systems. The work
presented here differs by (1) supporting a textual design specification notation and (2)
supporting the systematic analysis of a set of standard interface properties. There is no
space in this paper to do full justice to a comparison between these techniques and to
compare the range of other techniques that have been developed recently, see for ex-
ample [11] for a review. The focus here is to demonstrate how formal techniques can
be made more routine and systematic through a real example. The example illustrates
techniques that fit naturally with the programmer’s view of the system while at the
same time triggering a usability perspective. The paper describes:

1. a notation that clearly and simply captures characteristics of interactive devices
2. a set of properties that can be systematically checked of the interactive system
3. a tool that pulls together the means of specification and the means of checking,

that is accessible to appropriate developers.

 Systematic Analysis of Control Panel Interfaces Using Formal Tools 73

Finally, discovery tools are required to explore the consequences of the problems un-
covered by these techniques. The systematic approach is supported by the IVY tool
developed to check MAL specifications. The paper explains the characteristics of the
tool and comments on how the formal approach can be complemented by a more user
focussed analysis.

2 The Example

The example is the automatic air conditioning panel of the Toyota Corolla (2001
European version). The actions of the air conditioning system concern setting tem-
perature and altering the rate and direction of the flow of air. While the actions asso-
ciated with temperature and rate of flow are relatively straightforward, complications
involve the number of modes that deal with the direction of flow. The complete set of
actions and displays is identified below.

Fig. 1. The air-conditioning control panel

Figure 1 shows what the control panel looks like. The panel has ten buttons (these are
enumerated in the figure) and there are seven display features that can change through
use of the air conditioning system ((a)-(h)). These elements are first identified before
describing them in more detail through the specification. The buttons correspond to
actions in the model, the names of the actions are as follows: (1) increase fan speed
(fanspeedup); (2) decrease fan speed (fanspeeddown); (3) increase target temperature
(tempup); (4) decrease target temperature (tempdown); (5) select air conditioning
mode (ackey); (6) select windscreen (front) flow mode (frontkey); (7) select flow
mode (modekey); (8) select air intake mode (airintakekey); (9) off (off); (10) select au-
tomatic mode (autokey).

The displayed indicators are perceivable attributes of the state. These are identified
in the model by the names in brackets in the following list: (a) flow mode (airflow);
(b) fan speed (fanspeed); (c) target temperature (settemp); (d) air-conditioning on/off
(ac); (e) wind screen (front) flow mode on/off (front); (f) recirculation air intake mode
(airintakefresh); (g) automatic mode on/off (auto).

74 J.C. Campos and M.D. Harrison

3 The Modeling Notation

A MAL specification is produced focusing on relevant actions and attributes of the
state. The semantics of MAL is discussed in more detail in [6,1]. This set of actions
and attributes may be modified as additional assumptions about the specification are
identified through experimenting with the system or exploring properties of the speci-
fication. The specification is structured using hierarchical interface components
(called interactors). In the example one interactor describes all the actions and visible
attributes of the state of the system. No assumptions are made in this analysis about
other properties that may be important from a usability point of view. For example, a
user may feel or hear the effect of changes in the temperature, fan speed and where
the air is flowing. These additional modalities are ignored. Context effects, for exam-
ple whether the car windows are open or not, are also ignored. In practice these as-
pects of the system could be considered additionally if appropriate.

There are three types of MAL axioms. Propositional axioms describe invariants
over the state of the interactor. Modal axioms describe effects of an action in terms of
the state of the interactor. The modal axioms describe production rules that define a
state machine. Finally deontic axioms, which are not used in this example, capture
conditions that determine when actions are permitted or obligatory.

Three visible state attributes are important to the functioning of the air conditioning
system: temperature (settemp), flow speed defined by the fan speed indicator
(fanspeed) and flow mode (airflow) that defines where the air flows, for example
dashboard level or floor level or to the windscreen. These attributes, see (a)-(c) in
Figure 1, can be described as follows:

interactor main
 attributes
 [vis] settemp : Temp
 [vis] airflow : AirFlow
 [vis] fanspeed : FanSpeed

The specification consists of one interactor named main. The modality [vis] of each
attribute is “visible”. These attributes of the states are changed by three sets of but-
tons: settemp by [tempup] (3) and [tempdown] (4); fanspeed by [fanspeedup] (1) and
[fanspeeddown] (2); the flow mode is controlled by a more complicated set of but-
tons. While the manual provided an initial explanation of how the controls are used,
this information was updated in the light of analysis and experimentation.

[tempup] (settemp < MAXHOT → settemp’ = settemp + 1)
 ∧ (settemp = MAXHOT → keep(settemp))
[tempdown] (settemp > MAXCOLD → settemp’ = settemp − 1)
 ∧ (settemp = MAXCOLD → keep(settemp))

Normal logical operators are used in the specification; actions appear in square brack-
ets. The expression to the right of the action describes how the state attributes are
changed. In the case of [tempup] if temperature is lower than the maximum possible
(MAXHOT) it is incremented. The new state of settemp is indicated by priming the at-
tribute, hence (settemp’) becomes the previous plus one. If temperature is already

 Systematic Analysis of Control Panel Interfaces Using Formal Tools 75

equal to MAXHOT, then its value does not change: (keep(settemp)). If an attribute
does not appear in the keep list and its behaviour is not defined by the axioms, then it
assumes a random value. [tempdown], [fanspeedup] and [fanspeeddown] have similar
definitions. More axioms are required for actions associated with where the air flows.
Possible air flow modes are defined by the set:

AirFlow = {panel, double, floor, floorws, wsclear}.

Whether the air conditioning system (temperature, fan and airflow) is switched on or
off is not yet captured in these axioms. The fact that this aspect of the design is not
clearly visible in the system is the reason for this omission. The only possible indica-
tor is the fan speed (see indicator (b) in Figure 1), but this is an indirect and not very
salient association. This omission raises an issue for the designer as to whether this
aspect of the design should be made more clear.

The air conditioning mode selector key (5) is defined when the system is on and
when it is off. When off, pressing the button has no effect on the state attributes, when
on the mode key simply changes the ac attribute, toggling its value.

on → [ackey] ac’ = ¬ac ∧ keep(auto, airintake, settemp, on, front, airflow, fanspeed)
¬on → [ackey] keep(auto, airintake, settemp, on, front, airflow, fanspeed, ac)

The windscreen (flow) mode selection button [frontkey] has the following axioms:

on → [frontkey] on’ ∧ front’ = ¬front ∧ keep(settemp)
¬on → [frontkey] on’ ∧ front’ ∧ keep(settemp)
[frontkey] front’ → (¬auto’ ∧ ¬airintake’ ∧ ac’)
front ↔ airflow = wsclear

Hence when the system is on, pressing the front button will toggle the front attribute,
and when switched off the button will switch it on (on’asserts the new value of on is
true). The final axiom specifies an invariant, namely when the front mode is set the
airflow is always in windscreen clear mode. The modekey and airintakekey are speci-
fied as follows:

[modekey] ¬auto’ ∧ front’ ∧ keep(airintake, settemp, on, fanspeed)
¬front → [modekey] (airflow = panel →airflow’ = double)
 ∧ (airflow = double → airflow’ = floor)
 ∧ (airflow = floor → airflow' = floorws)
 ∧ (airflow = floorws → airflow' = panel) ∧ keep(ac)
[airintakekey] airintake' = ¬airintake
 ∧ keep(auto, settemp, on, front, airflow, fanspeed, ac)

It was difficult to produce an unambiguous and accurate specification of this system
based on both the manual and use of the system because: (a) the manual is not clear in
places – e.g., “When the Front key is pressed, air flows mainly through the wind-
screen vents, and the FRESH air intake mode is automatically set” is only true when
the front mode is off; (b) the manual is incomplete - e.g., the fact that pressing the
mode key in auto mode turns the mode indicator off is not described in the manual;
(c) the manual is inconsistent with the device - e.g., references to the A/C button be-
ing depressed are not consistent with the actual user interface where buttons do not

76 J.C. Campos and M.D. Harrison

have a depressed state; (d) descriptions within the manual are mutually inconsistent -
e.g., “press the MODE key to switch off AUTO mode” and “in AUTO mode you do
not have to use the MODE key, unless you want a different flux mode”; (e) assump-
tions are omitted - e.g., the manual descriptions only describe changes produced by
the buttons and assume that what is unmentioned remains unchanged which is as al-
ready stated not what is assumed in MAL. Appendix A provides a set of axioms that
combine the results derived from reading the manual with observations from use of
the system.

4 Systematic Analysis

Analysis is first concerned with the credibility of the system, exploring those properties
that should be true in terms of a plausible mental model of the system. For example:

 AG(auto → on) (1)

The property is described in CTL (Computational Tree Logic, see for example, [4])
and asserts that auto mode can only be armed if the system is on. This property is not
true in the version of the system specification based on the manual. A counterexample
shows that the air intake key arms the automatic mode without switching the system.
A new specification in which the previous state of the system could be recovered even
though the system had been switched off fixes the problem. Exploration of other
properties indicates that when switching between modes (for example from auto mode
to front mode and back) the system keeps a memory of the state in each mode. In the
specification a variable acmem is used to define the state of the ac mode. This and
further exploration of system actions produces further changes to the specification
(see Appendix A).

The axioms that relate to acmem are as follows:

[ackey] acmem’ = ac’
[a :−{ackey}] keep(acmem)
front → [modekey] ac’ = acmem
¬on → [a :{fanspeedup, fanspeeddown}] ac’ = acmem
[frontkey] ¬front’ → ac’ = acmem

When ackey is pressed, acmem stores the new value of ac (first axiom), all other ac-
tions do not change its value (second axiom – note use of a:−{ackey} which defines
actions a not including ackey); pressing modekey when the front mode is on, puts the
air conditioning mode in the state stored in memory (third axiom), and the same hap-
pens when fanspeedup or fanspeeddown are pressed while the system is off (fourth
axiom), or if pressing frontkey leaves the front mode on (fifth axiom). Property 1 is
true in this new model.

Standard patterns were developed for the systematic analysis of interactive sys-
tems. Due to space constraints, only minimal information on the patterns is provided,
presenting basic (no concurrency) formulations only. The patterns use a number of
notational assumptions. s is the valuation of the attributes in the current state (S), c ⊆
dom(ρ) (with ρ:Attributes → Presentation defining the presentation modalities) a
subset of perceivable attributes, =* is equality distributed over attributes in the state, a

 Systematic Analysis of Control Panel Interfaces Using Formal Tools 77

an action, AXa p a shorthand for AX(a → p) (i.e., in all next states arrived at by a, p
holds), ≠*means at least one attribute must be different, and pred an optional predicate
used to constrain the analysis to a sub-set of states. The patterns are formulated in a
CTL like logic that is transformed into correct CTL by the IVY tool (described in
Section 5).

Feedback is a key property of a good user interface that helps the user gain confi-
dence in the effect of actions. It helps create an appropriate mental model of the sys-
tem. Feedback properties can be verified with the following pattern:

Property Pattern: Feedback
Intent: To verify that a given action provides feedback.

Formulation: AG(pred(s) ∧ c =* x → AXa (c ≠* x))
Under the defined condition (pred), the action (a) will always cause a change in
some perceivable attribute (in c).

If the mode key is instantiated in the pattern, i.e., a ≡ modekey and feedback is provided
by the airflow indicator (indicator (a) in figure 1), the property can be expressed as:

 AG(airflow = x → AXmodekey(airflow ≠ x)) (2)

The IVY tool instantiates the pattern, generating five properties, one for each flow
mode action. These all hold, suggesting that the airflow indicator provides adequate
feedback and therefore mode change is clear. Instantiation of the property with fans-
peedup and associated indicator fanspeed (see indicator (b) in figure 1) produces

 AG(fanspeed = x → AXfanspeedup(fanspeed ≠ x)) (3)

The property fails when the fan speed is at maximum (10) and the button does not
change speed (or indicator). In practice failure of a property may not be significant.
While no other indicator is clear at this limit, this may not be a problem for the user.

Consistency of action is another characteristic of a system that facilitates predict-
ability and learning. Consistency can be internal (between different parts of the sys-
tem) or external (with other systems). Four buttons which act as on/off switches (A/C,
Auto, Mode and Front) look the same and should be internally consistent.

Property Pattern: Behavioural consistency
Intent: To verify that a given action causes consistent effect.
Formulation: AG(pred(s) ∧ s =* x → AXac(effect(x,s)))
with effect : 2(S×S) characterising the effect the action should have in the state.

This generalization of the Feedback pattern states that the action must always cause
the same effect in the user interface. The candidates for test are buttons ackey, front-
key, airintakekey and autokey, the relevant state is the status of each button (ac, front,
airintake and auto, respectively), and the desired effect is the toggling of that status.
In the case of ackey, the pattern gives:

 AG(ac = x → AXackey(ac = ¬x)) (4)

78 J.C. Campos and M.D. Harrison

All the instantiated properties hold when the system is switched on except [auto-
key]. In the case of [autokey] the button only turns the mode on, it does not turn it off.
One of the interesting features of this design is that when the system is off there are a
number of unexpected side effects of pressing some of these buttons that cause
changes to subsequent behavior.

Although one form of undo has been analyzed already (for the on/off switches),
another relevant pattern is whether there are actions that can undo the effect of other
actions.

Property Pattern: Undo
Intent: To check whether the effect of an action can be undone.
Formulation (any action): AG(s =* x → AXa1EX(s =* x))
with a1�the action whose effect we want to undo, any action required to undo.
Formulation (specific action): AG(s =* x → AXa1(EX(a2) ∧ AXa2(s =* x))
a2 the action that should undo a1; the action availability test (EX(a2)) is optional.

Property Pattern: Reversibility
Intent: To check whether the effect of an action can be eventually re-
versed/undone.
Formulation: AG(s =* x → AXa1EF(s =* x))

For the mode button this pattern checks whether there is another action that can be
identified as performing its undo. Focussing on the airflow indicator:

 AG(airflow = x → AXmodekeyAXxaction(airflow = x)) (5)

Attempting the verification for xaction = autokey fails for all properties, except when
airflow = floorws. It fails because modekey does not have a symmetric action that un-
does its effect (on the airflow mode). Exploring why it holds in the one case leads to
the unexpected conclusion that the modekey action is unavailable when the air flow
mode is floorws. The mode key action should always be available to allow the flow
mode to be changed. The model has been specified so that the user can always press
the buttons but this does not imply that pressing a button always has an effect. The
problem is that the cyclic behaviour ‘implemented’ by the mode button includes
wsclear but this mode should only be accessible by using the Front key. Whether the
modekey can always be undone by some means leads to a positive answer.

 AG(airflow = x → AXmodekeyEF(airflow = x)) (6)

5 Checking Patterns Using IVY

The IVY tool supports the patterns described in the previous section. Its architecture is
given in Figure 2. The tool has four components: a model editor designed to support
MAL interactor development; a property editor designed to support the formulation of
relevant usability related properties; a translator (i2smv) that transforms interactor
models into the model checker’s input language; a trace visualizer/analyzer that helps
analyze any traces produced by the model checker.

 Systematic Analysis of Control Panel Interfaces Using Formal Tools 79

Fig. 2. IVY Architecture

5.1 The Model Editor

The editor supports the structure and syntax of MAL [1] interactors in two editing
modes indicated in the two windows of figure 3. In graphical mode the overall struc-
ture of the model can be viewed and manipulated while at the same time providing an
individual edit capability. The textual mode involves the usual editing facilities: cut
and paste, undo and redo etc. This mode supports direct editing and fine tuning. The
interactor in graphical mode is based on UML class diagrams [13].

Interactor aggregation and specialization uses an approach consistent with UML to
make it easier for designers to understand a model’s representation. A number of in-
spectors are provided in graphical mode to make it possible to edit the different as-
pects of the model (types, attributes, actions and axioms of the selected interactor, and
so on). Textual mode allows direct editing of the text of the model thus enabling ex-
perienced users to edit the model more quickly. Aspects of the text can be changed di-
rectly instead of using the inspector panels of the graphical mode. Less expert users
may choose more guidance through the graphical mode.

Fig. 3. IVY Model Editor

80 J.C. Campos and M.D. Harrison

5.2 Property Editor

Verification of assumptions about the expected behavior of the device is achieved by
expressing CTL properties. The Property Editor uses patterns to support the choice of
specific properties (see figure 4). The editor supports pattern selection, making it easy
to instantiate the chosen pattern expressed in CTL (or LTL) with actions and attrib-
utes from the model as shown in the figure. Verification is achieved from the trans-
lated MAL interactors by the NuSMV model checker [3]. The trace visualizer can
then be used to analyze counter-examples or witnesses after the checking process.

Fig. 4. Expressing properties using patterns

5.3 Trace Visualization

Traces are expressed in terms of the variables and states generated through the trans-
lation into SMV’s input language. Since the SMV model includes some state artifacts
that were created through this step an important element in trace visualization is to
ensure that the states and variables that are displayed for the analyst are only in terms
of the original interactors. A typical example of this reversion is the elimination of the
attribute ‘action’, annotations used in SMV to distinguish MAL actions. The visuali-
zation component aims to focus on the problem that is being pointed out by the trace
to support discovery of possible solutions reducing the cost of the analysis.

The visualizer implements a number of alternative representations to explore the ac-
ceptability of different approaches. They include: a tabular representation that is similar to
the existing SMV implementation of Cadence Labs (www.cadence.com); a graphical rep-
resentation based on states; and an Activity Diagram representation based on actions [7].

The tabular representation (figure 5) presents information in a table similar to that
generated by Cadence SMV or by [12]. Column headings show state numbers. The be-
ginning of a cycle is shown by an asterisk. Cells with darker backgrounds indicate that
the attribute’s value in the current state has changed since the previous state otherwise a
lighter background is used. This idea, adopted from [12], shows quickly when the inter-
actor’s attributes change state.

 Systematic Analysis of Control Panel Interfaces Using Formal Tools 81

Fig. 5. Tabular representation: no feedback for fanspeedup

The state based representation (see figure 6, left) represents each interactor in a
column showing evolution of interactor states (attributes are listed against each state).
The global state (including all interactor variables) is represented separately to serve
as an index to the states of the individual interactors. A green arrow indicates the be-
ginning and end of loops in this state. Alternatively a pop-up option toggles attribute
representation to provide a more compact view (as shown in figure 6). While attrib-
utes are not represented in the diagram they can be consulted by placing the mouse
over each state, thereby reducing information and making it easier to discover the
problem highlighted by the trace. Actions are shown as labels in the arrows between
two consecutive states if a transition exists. A second variant of this diagram repre-
sents the (physical) states of the SMV modules generated from the model.

The Activity Diagram representation follows the notation of UML 2.0 for activity
diagrams (right hand side, figure 6). Activities are represented by one rectangle with
rounded corners. The small rectangles associated with the activities represent the state
of the interactor before and after an activity occurs. As this representation clearly fo-
cuses on actions, interactor attributes appear as pop-ups. The attribute values can be
consulted through one pop-up, placing the mouse on the rectangles of the states.

Fig. 6. Counter example representations (state based/activity diagram)

82 J.C. Campos and M.D. Harrison

5.4 Exploring the Traces

The visualizer (in all modes) makes it possible to mark states depending on criteria
defined over the state attributes. Criteria are defined by relations (=, >, <) between at-
tribute pairs or between attributes and values. To each criterion is associated a color.
All the states that verify a given criterion are annotated with the specified color. In the
case of figure 6 states marked are states where airflow = panel.

In the case of comparison of attributes, two half-circles of the chosen color are
drawn near each one of the relevant attributes. In the case of comparison between at-
tributes and values, filled circles are drawn, with the chosen color. If the pop-ups op-
tion is enabled the condition represented by each marker can be revealed by placing
the mouse over it.

6 Extending the Analysis

Mode complexity is a fundamental issue in interactive system design and is particu-
larly susceptible to model checking analysis. In [8] two types of modes are identified:
action modes and indicator modes. Problems might arise when two modes are similar
but not the same (leading users to believe the system is in a mode that it is not). Other
problems arise through the evolution of modes (for example, actions might cause un-
desirable/incorrect mode changes) rendering the effect of action unpredictable.

A step beyond the toggling behavior of buttons would be to analyze whether the
buttons, when pressed twice, leave the overall mode of the system in the same state.
Consider, for example, the front key. If the system is off it always turns the system
on. Further investigation could explore a broader concept of “working mode” (a set of
state attributes that are related by mode). For example testing whether it is the case
that when the system is on, the effect of turning the air flow on and off is to leave the
system in the same working mode as it was in initially. For this case the Undo pattern
can be used with the specific action formulation, making a1�and a2�equal to the front-
key. In this case the attributes that are relevant to the working mode include the attrib-
utes auto, on, ac, airintake and airflow. Attributes settemp, fanspeed and front are not
relevant to the analysis. Since the action frontkey has already been exhaustively ana-
lyzed it shall be ignored. Applying the pattern, the following property is produced:

AG((auto, on, ac, airintake) =* x →
 AXfrontkey(EX(frontkey) ∧ AXfrontkey((auto, on, ac, airintake) =* x))))

Action modes may be explored using the consistency pattern. When the effect is
different from the one expected, action modes can be identified. Alternatively a guard
can be used to identify a relevant mode making it possible to check whether the action
has the correct behavior for the mode (or, negating the guard and checking whether it
has that same behavior outside the relevant mode).

The above analysis limits consideration by ignoring the function of the panel. In
the style of [2] an alternative strategy would be to explore how the device enables the
environment to reach a desired temperature. This property relates to the context of use
of the device, the temperature of the environment, which is not present in the model.
There is no space in the paper to present a relevant analysis.

 Systematic Analysis of Control Panel Interfaces Using Formal Tools 83

7 Conclusion

For formal techniques to become a widely used approach to the analysis of interactive
systems two developments are necessary. The first is to make the analysis common-
place and systematic for developers. The second is to allow reuse of similar specifica-
tions to reduce the work necessary to perform the analysis. The work described in this
paper addresses both these developments. The use of IVY and patterns provides real
promise that systematic techniques are now available for a class of control panel sys-
tems. Consideration has been limited to control panel interfaces because the specifica-
tion of dynamically changing nested actions becomes relatively cumbersome in MAL.
The variety and number of such systems that are currently under analysis is growing
substantially. The same small set of examples is no longer the focus of attention.
Combining tools like IVY with repositories of specifications such as that envisaged
by Thimbleby using XML standards (see, for example [9]) will provide an invaluable
resource for interactive system developers. The issue of reuse is also being addressed.
Patterns provide significant support for developers when they face new designs. Fur-
ther work is required to explore generic interactors, similar to that discussed in the
broader context of smart environments [10].

Acknowledgments. We acknowledge with thanks EPSRC grant EP/F01404X/1 and
FCT/FEDER grant POSC/EIA/56646/2004. Michael Harrison is grateful to col-
leagues in the ReSIST NoE (www.resit-noe.org), José Campos to Nuno Sousa for
work in IVY.

References

1. Campos, J.C., Harrison, M.D.: Model checking interactor specifications. Automated Soft-
ware Engineering 8, 275–310 (2001)

2. Campos, J.C., Harrison, M.D.: Considering context and users in interactive systems analy-
sis. In: van de Veer, G., Palanque, P., Wesson, J. (eds.) Engineering Interactive Systems
(accepted for publication, 2007)

3. Cimatti, A., Roveri, M., Olivetti, E., Keighren, G., Pistore, M., Roveri, M., Semprini, S.,
Tchaltsev, A.: NuSMV 2.3 user manual. Technical report, ITC-IRST, Trento, Italy (2007)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
5. Degani, A.: Taming HAL: designing interfaces beyond 2001. Macmillan, Palgrave (2003)
6. Duke, D.J., Harrison, M.D.: Abstract interaction objects. Computer Graphics Forum 12(3),

25–36 (1993)
7. Fowler, M.: UML Distilled: a brief guide to the standard object modelling language, 3rd

edn. Addison-Wesley, Reading (2004)
8. Gow, J., Thimbleby, H., Cairns, P.: Automatic critiques of interface modes. In: Gilroy,

S.W., Harrison, M.D. (eds.) DSV-IS 2005. LNCS, vol. 3941, pp. 201–212. Springer, Hei-
delberg (2006)

9. Gow, J., Thimbleby, H.W.: MAUI: An interface design tool based on matrix algebra. In:
Jacob, R.J.K., Limbourg, Q., Vanderdonckt, J. (eds.) Computer Aided Design of User In-
terfaces IV, CADUI 2004, pp. 81–94 (2004)

84 J.C. Campos and M.D. Harrison

10. Harrison, M.D., Kray, C., Campos, J.C.: Exploring an option space to engineer a ubiqui-
tous computing system. Electr. Notes in Theoretical Computer Science 208C, 41–55
(2008)

11. Heymann, M., Degani, A.: Formal analysis and automatic generation of user interfaces:
Approach, methodology, and an algorithm. Human Factors: The Journal of the Human
Factors and Ergonomics Society 49(2), 311–330 (2007)

12. Loer, K., Harrison, M.D.: An integrated framework for the analysis of dependable interac-
tive systems (IFADIS): its tool support and evaluation. Automated Software Engineer-
ing 13(4), 469–496 (2006)

13. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Man-
ual (UML). Addison-Wesley, Reading (1999)

14. Thimbleby, H.W.: Press on: principles of interaction programming. MIT Press, Cambridge
(2007)

Appendix A System Definition

defines
 MAXCOLD = 15
 MAXHOT = 30
 MAXFANSPEED = 10
types
 Temp = MAXCOLD .. MAXHOT
 AirFlow = {panel, double, floor, floorws, wsclear}
 FanSpeed = 0..MAXFANSPEED

interactor main
 attributes
 [vis] auto, on, front, ac: boolean
 [vis] airintake: boolean # true: fresh / false: recirc
 automem, acmem, airintakemem: boolean
 [vis] settemp: Temp
 [vis] airflow: AirFlow
 airflowmem: AirFlow
 [vis] fanspeed: FanSpeed
 actions
 autokey off modekey fanspeedup fanspeeddown tempup tempdown frontkey ackey airintakekey
 axioms
 [autokey] auto’ ∧ on’ ∧ ¬front’ ∧ keep(airintake, settemp)
 [off] ¬auto’ ∧ ¬on’ ∧ fanspeed’=0 ∧ ¬ac’ ∧ keep(airintake,settemp,front,airflow)
 [modekey] ¬auto’ ∧ ¬front’ ∧ keep(airintake,settemp,on,fanspeed)
 ¬front → [modekey] (airflow=panel → airflow’=double) ∧ (airflow=double → airflow’=floor)
 ∧ (airflow=floor → airflow’=floorws) ∧ (airflow=floorws → airflow’=panel) ∧ keep(ac)
 [fanspeedup] ¬auto’ ∧ on’ ∧ keep(airintake, settemp, front, airflow)
 on → [fanspeedup] (fanspeed<MAXFANSPEED → fanspeed’=fanspeed+1)
 ∧ (fanspeed=MAXFANSPEED → fanspeed’=fanspeed) ∧ keep(ac)
 ¬on → [fanspeedup] fanspeed’=1
 [fanspeeddown] ¬auto’ ∧ on’ ∧ keep(airintake, settemp, front, airflow, ac)
 (on ∧ auto) → [fanspeeddown] keep(fanspeed, ac)
 (on ∧ ¬auto) → [fanspeeddown] (fanspeed >0 → fanspeed’=fanspeed -1)
 ∧ (fanspeed =0 → fanspeed’=fanspeed) ∧ keep(ac)
 ¬on → [fanspeeddown] fanspeed’=1
 on → [tempup] (settemp<MAXHOT → settemp’=settemp +1)
 ∧ (settemp=MAXHOT → settemp’=settemp) ∧ keep(auto,airintake,on,front,ac)
 ¬on → [tempup] keep(auto,airintake,settemp,on,front,airflow,fanspeed,ac)
 on → [tempdown] (settemp>MAXCOLD → settemp’=settemp -1)
 ∧ (settemp=MAXCOLD → settemp’=settemp) ∧ keep(auto,airintake,on,front,ac)

 Systematic Analysis of Control Panel Interfaces Using Formal Tools 85

 ¬on → [tempdown] keep(auto,airintake,settemp,on,front,airflow,fanspeed,ac)
 on → [frontkey] on’ ∧ front’=¬front ∧ keep(settemp)
 ¬on → [frontkey] on’ ∧ front’ ∧ keep(settemp)
 [frontkey] front’ → (¬auto’ ∧ ¬airintake’ ∧ ac’)
 front ↔ airflow=wsclear
 on → [ackey] ac’=¬ac ∧ keep(auto,airintake,settemp,on,front,airflow,fanspeed)
 ¬on → [ackey] keep(auto,airintake,settemp,on,front,airflow,fanspeed,ac)
 [airintakekey] airintake’=¬airintake ∧ keep(auto,settemp,on,front,airflow,fanspeed,ac)
 [] ¬auto∧ ¬on ∧ fanspeed=0 ∧ ¬ac
 # airflow
 ¬front → [frontkey] airflowmem’=airflow
 front → [ac:-{frontkey, modekey}] keep(airflowmem)
 front → [modekey] airflow’=airflowmem
 (on ∧ front) → [frontkey] airflow’=airflowmem
 (¬on ∧ front) → [frontkey] keep(airflowmem)
 # airintake
 ¬front → [frontkey] airintakemem’=airintake
 front → [ac:-{ffrontkey, airintakekeyg}] keep(airintakemem)
 front → [airintakekey] airintakemem’=airintake’
 (on ∧ front) → [frontkey] airintake’=airintakemem
 (¬on ∧ front) → [frontkey] keep(airintakemem)
 # ac
 [ackey] acmem’=ac’
 [ac:-{ackey}] keep(acmem)
 (front ∧ on) → [modekey] ac’=acmem
 (front ∧ ¬on) → [modekey] keep(ac)
 ¬on → [ac:{fanspeedup,fanspeeddown}] ac’=acmem
 [frontkey] ¬front’ → ac’=acmem
 [autokey] ac’=acmem
 # auto
 [ac:{autokey,modekey}] automem’=auto’
 [ac:-{autokey,modekey,frontkey}] keep(automem)
 ¬on → [frontkey] keep(automem)
 on → [frontkey] automem’=auto
 [frontkey] ¬front’ → auto’=automem

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 86–91, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Investigating System Navigation Ergonomics through
Model Verification

Alexandre Scaico1, Maria de F. Q. Vieira1, Markson R. F. de Sousa1,
 and Charles Santoni2

1 LIHM DEE CEEI UFCG
Caixa Postal 10105 - Campina Grande - Paraíba - Brazil

{scaico,fatima,marckson}@dee.ufcg.edu.br
2 LSIS-UMR 6168

Av. Escadrille Normandie Niemen
13397 Marseille Cedex 20 France

charles.santoni@lsis.org

Abstract. This paper discusses the use of formal models in the process of in-
vestigating the ergonomics of the navigation component in interactive systems.
The investigation is based upon model analysis and a set of navigation proper-
ties. The formalism employed on this work was Coloured Petri Nets. The paper
illustrates how the set of ergonomic properties was mapped into the model
properties with the support of the formalism tools and specific functions devel-
oped to support the interface designer during model analysis. The context
chosen as the basis for discussion is the operation of automated systems in the
electricity industry; and a case study is presented to illustrate the analysis.

Keywords: Model based design, safety critical interfaces, CPN.

1 Introduction

The adoption of formal methods has been an approach growing in acceptance among
human interface designers in order to validate alternative choices in the early stages of
design. In this modelling context one can use various formalisms, which in turn sup-
port different kinds of analysis. The formalism employed on this work was Coloured
Petri Nets (CPN) [3]. This choice of formalism was based on the availability of a
graphic notation and tools to support simulation and formal analysis such as property
verification.

On this paper one will explore modelling and analyzing the navigation component
of human interfaces, in the context of industrial automated systems; more precisely in
the electricity industry. The case study developed during this work is based on a real
installation that belongs to one of the biggest electricity companies in Brazil.

Electric systems are currently operated through different levels of automation. One
of those levels concerns the use of supervisory software, which integrates the plant’s
resources, supporting the operator on his supervision and control task. During this
study one of this system’s substation was modelled from the viewpoint of its supervi-
sory software human interface. Studying the company’s human error reports it was

 Investigating System Navigation Ergonomics through Model Verification 87

found that a high incidence of errors is related to the operator altering the task se-
quence in relation to the prescribed one. This finding motivated the study of the navi-
gation component of the human interface in order to analyze the alternatives given to
the user and adjust them to prevent those errors.

This paper is organized as follows. Section 2 presents the proposed navigation
CPN model. Section 3 presents the usability properties. Section 4 discusses the case
study model analysis and illustrates the functions which were built to support the
analysis. Section 5 presents discusses the analyses results and proposes future steps.

2 Modelling and Analyzing the Navigation Component of Human
Interfaces

The interface navigation model was built as a modular structure to allow, through
minor modifications, its adaptation to different installations within the application
context; acting as a framework for building other models. The Navigation model
represents the navigation possibilities between windows in typical supervision soft-
ware, such as: operator’s login, plant synoptic, trend graphs, variable’s history, event
and alarm, and help. The windows display the interaction objects available to the
operator to perform the plant’s supervision and control tasks.

In the case study, the navigation model was instantiated to represent the supervi-
sory system at the substation as well as the interaction objects typically available in
the electric system such as: relays switch, switch breakers, command switches, and
the toggle switch local/remote command. An object model library was built that
represents the devices typically found in the electricity company substation installa-
tions. This library together with the navigation model simplified the representation of
other similar installations within the same company.

3 Model Properties

A set of navigation properties was proposed to reflect desirable features from the
ergonomic point of view, which can be verified through model analysis [4]. It follows
a brief description of these, which are classed as validity properties [2].

(1) Reversibility is related to the user ability of returning to a previous point in the
interaction; while cancelling previous operations. This property can be verified by
means of the CPN model property reachability. (2) The Existence of access paths
between specific points of the interaction ensures the access to specific states of the
system. This property can be verified through the analysis of the CPN markings;
checking the reachability of a state Mj from an initial state Mk. (3) Reinitialization is
the possibility of returning to the initial point of the interaction, and can be verified
through the analysis of the CPN net markings. If the initial state is in the list of the
model’s home marking, this property is verified. (4) Access to Exit is the possibility of
exiting the system from various strategic points. To detect the exit points in the
model’s state space one checks if all the dead markings listed in the Occ report corre-
spond to an exit point. A model with this property will have the markings correspond-
ing to exit states in the list of the dead markings as well as in the list of home markings.

88 A. Scaico et al.

(5) The Existence of alternative navigation paths when performing a specific task
ensures efficiency in task performance and interaction flexibility; thus allowing for
different levels of user experience and profiles. To investigate this property, the All-
Path [5] function was developed to search the model state space for all the existing
paths between two states. Other functions were also developed to be combined with the
AllPath function for this search.

4 Model Analysis

The model analyses focus on the verification of usability properties in the model’s
state space. The CPN formalism offers Design/CPN [1] as a supporting tool to model
building, simulation and verification. Using this tool, one can obtain the model’s
Occurrence graph (Occ) and a standard report on the model properties. Some of the
model properties can be verified directly on the tool’s standard report, while others
demand the functions developed specifically for the purpose of investigating alterna-
tive navigation paths between states.

The navigation paths analysis allows investigating alternative ways of performing a
task in the modelled system. As a result the designer can anticipate interaction prob-
lems related to the existence of paths which: (a) allow the operator to perform forbid-
den or inappropriate actions, (b) take the operator to the end of the task without
having completed it, (c) change the prescribed order of actions. Anticipating these
problems can lead into a more ergonomic and safer interaction.

In order to analyze the navigation paths it is necessary to perform three steps: (1)
determine the initial and final state of the interaction related to the task; (2) identify in
the state space all the possible paths between those states and (3) analyze the actions
that constitute each state, looking for potential flaws that could lead into errors.

Determining, in the model state space, the task’s initial and end states that comply
with a specific search criteria is non-trivial, since the search parameters vary accord-
ing to the intended precision of the search result. It implies searching for all the navi-
gation paths that include a specific subset of the interface elements (such as switches,
buttons, etc), which can vary from just a few to all of the objects present in the model.
This translates into finding all the places in the CPN model which have their tokens in
predefined states. To help the designer, functions were written to return all the states
that satisfy a specified predicate. The function Def_est returns a list with all the states
that comply with a specific predicate.

The AllPath function was developed to identify in the model’s state space all the
possible paths between states, overcoming the analysis limits of the Design/CPN tool.
This function was rewritten to overcome its original restriction of applying only to
models with 100 to 200 states. This was achieved by discarding the paths of no inter-
est and limiting the number of interactions. This function’s parameters are: the initial
state, the final state, the path size and the number of iterations. The path size deter-
mines the number of navigation steps to be considered in the search. It means that it
will return all the navigation paths up to the specified number of steps found within
the specified number of iterations, and the information on having reached or not the
entire space state.

 Investigating System Navigation Ergonomics through Model Verification 89

Having found and listed all the possible paths between two states, these must be
analyzed in terms of the actions that can be performed when the user follows them.
Design/CPN allows verifying the model markings for a specific model state using the
function DisplayNodes. To analyze the navigation path between states one must ana-
lyze each node of interest and compare it with the subsequent one. This means com-
paring places to determine the changes between model states. The node comparison
task, performed manually, is tedious, subject to errors and can be unfeasible depend-
ing on the number of paths and the number of nodes in each path. To simplify it, a
function was written that compares two nodes in the space state and returns only the
places with different markings. Its output is similar to the function DisplayNodes in
Design/CPN, highlighting the difference between two nodes. It follows an example of
its application to the case study:

Difference between node 169 and node 296 is:
Login'Allow_Nav 1: 1`nav_perm --- Login'Allow_Nav 1: empty

On this example there was a change in one place (Allow_Nav) in the model page
Login. The place Allow_Nav, in node 169, had 1 token of type nav_perm, and in node
296 had no token left. Analyzing the change, given the inexistence of tokens in the
place Allow_Nav models “no navigation allowed”, one concludes that an action
blocked the user navigation.

4.1 Case Study Analysis

Initially the analysis was performed on the tool’s standard report, focusing on the
model’s home properties; then it progressed into the verification of the model naviga-
tion properties. From the CPN tool standard report it was concluded that the Occ
generation was full; therefore the properties’ verification could be performed in all of
the model’s state space. From the report it was found. That no home markings implied
the inexistence of dead markings which represented the interface exit points. Remov-
ing the exit points from the model and recalculating the state space, the new report
showed that all the states became home markings. This result implies that the system
operator can reach any state from any point of the interface. This is a desirable situa-
tion since dead markings, other than the exit points, would imply “dead ends” in the
interface navigation which would prevent the operator from performing the task.

From the navigation property verification the results obtained were: the Reinitiali-
zation property was verified; the Reversibility was also verified and the property Ac-
cess to Exit points does not apply to the context of supervisory systems, for safety
reasons.

For the case study the interaction scenario analyzed consisted of closing the volt-
age line TL01Y3 at the substation using the supervisory software. It follows the de-
scription of the analysis three steps.

The first step consisted in finding the interaction’s initial and end state. During this
step the function def_est was employed with its parameters related to the line’s switch
break and switch gear states. Initially the line was in the open state followed by a
closed state. The function returned only one state matching the specified condition:

Line TL01Y3 open - 267
Line TL01Y3 closed – 1

90 A. Scaico et al.

The second step consisted in applying the function AllPath to identify all the pos-
sible paths that connect the initial and final states, found in the previous step. Know-
ing that there are three elements involved in the interaction, one concludes that the
number of intermediate states during the interaction was seven (the initial state, plus
two states for each element). Therefore, the path length to be researched by the func-
tion in the state space was up to seven states. To limit the AllPath function’s process-
ing time, the iterations were limited to 5000000.
Function call: AllPath(267,1,7,5000000);

Result:
List:

[267, 631, 824, 1737, 268, 637, 1]
[267, 631, 824, 1736, 272, 663, 1]
[267, 630, 66, 176, 268, 637, 1]
[267, 630, 66, 174, 10, 32, 1]
[267, 629, 67, 184, 272, 663, 1]
[267, 629, 67, 182, 10, 32, 1]
List Size: 6
AllPath finished - Iterations: 3924
val it = () : unit

The third step in the case study analysis, consisted in verifying, for each navigation
path, the progressive changes between the model states. The function cnodes com-
pares two consecutive states in the navigation sequence, searching for differences
between them and returns a list of places with different markings. Then the function
was employed to compare pairs of nodes, within the six navigation paths obtained in
the previous step. It follows this function’s calls related to the third navigation path
[267, 630, 66, 176, 268, 637, 1] in the previous list:

cnodes(267,630);
cnodes(630,66);
cnodes(66,176);
cnodes(176,268);
cnodes(268,637);
cnodes(637,1);

and the cnodes function’s output:

Difference between node 267 and node 630 is:
Loc_Rem'Allow_Nav 1: 1`allow_nav --- Loc_Rem'Allow_Nav 1: empty
Switchgear'SG_Open 1: 1`(TL01Y3,SG31Y34)++ 1`(TL01Y3,SG31Y35) ---

Switchgear'SG_Open 1: 1`(TL01Y3,SG31Y35)
Switchgear'Wait_Conf_Close 1: empty --- Switchgear'Wait_Conf_Close 1:

1`(TL01Y3,SG31Y34)
val it = () : unit

The results indicate that the places Loc_Rem'Allow_Nav, Switchgear’SG_Open
and Switchgear'Wait_Conf_Close, had their markings changed; meaning that the
switchgear SG31Y34 was closed. Analyzing all six navigation paths it was possible to
anticipate potential interaction errors such as performing the task in a wrong sequence
of steps. Having identified the potential errors due to: changes in the prescribed se-
quence of actions, missing or non-pertinent actions; the designer can introduce
mechanisms such as warnings and navigation restrictions during the interaction.

 Investigating System Navigation Ergonomics through Model Verification 91

5 Final Considerations and Future Directions

Since most industrial incidents are related to human procedures, it is assumed that
improving system’s ergonomics will reduce the human error. As discussed in this
paper, user interface model analysis helps to eradicate flaws that may induce human
errors. This paper has presented a CPN navigation model and its application to a case
study related to the use of supervisory software in the electricity industry. To ensure
the feasibility of the analysis procedures, and reduce the manual efforts involved,
functions were developed to help the interface designer search the model’s state
space.

From the preliminary results the authors are confident that the adoption of the pro-
posed properties along with function’s support during model analysis can bring con-
siderable gains to the design of human interfaces, in the chosen context. Knowing
alternative navigation paths, between two interface states, during task performance is
essential to design more effective and safe interactive systems.

Several prospects are envisaged to complement and deepen this research work in
terms of the analysis approach. Initially it is proposed to refine the AllPath function to
account for the reversibility of actions. This will allow for a simplification in the al-
ternative path analysis. In addition it is intended to add behavioural characteristics to
the objects’ models such as faulty behaviour, and to expand it to represent new ob-
jects. Representing material faults will widen the scope of the analysis. It is also
planned to parameterize the objects´ models in order to turn the navigation model into
a framework capable of representing a variety of human interface designs found in the
industrial electricity sector. This framework will simplify the designer modelling task.

References

1. Design/CPN, http://www.daimi.au.dk/designCPN/
2. Hussey, A., MacColl, I., Carrington, D.: Assessing Usability from Formal User-Interface

Designs. software Verification Research Centre TR00-15, The University of Queensland
(May 2000)

3. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Monographs in Theoretical Computer Science, vol. 1. Springer, Heidelberg (1992)

4. Sousa, M.R.F., Turnell, M.F.Q.V.: User Interface Based on Coloured Petri Nets Modeling
and Analysis. In: Proceedings of the 1998 IEEE International Conference on Systems Man
and Cybernetics, San Diego, USA (1998)

5. Turnell, M.F.Q.V., Scaico, A., Sousa, M.R.F., Perkusich, A.: Industrial User Interface
Evaluation Based On Coloured Petri Nets Modelling and Analysis. In: Johnson, C. (ed.)
DSV-IS 2001. LNCS, vol. 2220, pp. 69–87. Springer, Heidelberg (2001)

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 92–95, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Tool Support for Representing Task Models, Dialog
Models and User-Interface Specifications

D. Reichart, A. Dittmar, P. Forbrig, and M. Wurdel

University of Rostock, Department of Computer Science,
Chair in Software Engineering,

Albert-Einstein Str. 21,
18059 Rostock, Germany

daniel.reichart@uni-rostock.de

Abstract. This paper focuses on the visualization of task models. Models in
general can be presented in different ways. We focus on tool support for differ-
ent editors working on the same instance of a task model.

1 Introduction

During the last years a lot of tools for task models have been developed and proven to
be especially useful for requirements specification. Nevertheless, it was recognized
that in the HCI community well established notations like CTT [3] cause some prob-
lems in other communities. This might be especially the case since task diagrams are
not part of the Unified Modeling Language [10].

In [2] we already discussed some relations between task models and activity dia-
grams. In the following we briefly demonstrate tools for different task representation.
It is assumed that the reader is familiar with task models.

2 Task-Model Representation

We already mentioned that CTT is some kind of standard in the HCI community to
represent task models. Originally our task models were presented in a slightly differ-
ent form because we attached roles, artifacts, tools and devices to tasks. Of course
these models can be presented in a CCT-like style as well. We developed an Eclipse
[4] plugin for this purpose. The visualization of a task model can be seen in figure 1.

Fig. 1. Task model for writing mails in a CTT-like presentation

 Tool Support for Representing Task Models, Dialog Models 93

Fig. 2. Task model for writing mails in an operator-centric

To understand the model of figure 1 one has to know the priorities of the temporal
relations. With another presentation this can be avoided. In figure 2 it is quit clear
what has to be done before “send mail” can be executed.

We already mentioned that Task models are not part of UML. Therefore, it seems
to be wise to offer software engineers an opportunity to get a presentation of a task
model as activity diagram, a first citizen of UML.

Fig. 3. Task model for writing mails as activity diagram

Based on these task models that already can be animated, dialog graphs are speci-
fied that allow to generate canonical abstract prototypes that later are refined to con-
crete user interfaces [11]. Figure 4 gives an impression how the graph specification
looks like. During the demonstration animated specifications, animated canonical
abstract prototypes and animated concrete prototypes will be shown.

94 D. Reichart et al.

Fig. 4. Dialog and task model for writing mails

3 Model-Based Development of Tool Support

After several years of individual software development we recently used the MDA
approach [8] to specify our models and to generate main parts of our tools. The tech-
nology offered by the eclipse environment [4] was used to develop our editors.

Based on Meta models and the eclipse modeling frameworks [5] editors can be
generated that allow the manipulation of task models. In general, such editors are not
very user friendly. However, the graphical editing framework [6] offers a technology
to develop editors that fulfill the usability requirements better. These editors work on
the same data mode as the generated editor. In this way it is possible to manipulate
model daty by different editors.

Figure 4 gives an impression of the development process.

Task

category : TaskCategory
childorder : TaskOrder

(from taskmodel)

ActiveFeature

id : String
importance : Double

VisualizationPage
resourcename : String

0..1

1

0..1

1

n

1

n

1

Generated
Editor

Meta Model

EMF
Model
Data

Editor with
Usability

Properties

GEF

Task

category : TaskCategory
childorder : TaskOrder

(from taskmodel)

ActiveFeature

id : String
importance : Double

VisualizationPage
resourcename : String

0..1

1

0..1

1

n

1

n

1

Task

category : TaskCategory
childorder : TaskOrder

(from taskmodel)

ActiveFeature

id : String
importance : Double

VisualizationPage
resourcename : String

0..1

1

0..1

1

n

1

n

1

Generated
Editor

Meta Model

EMF
Model
Data

Editor with
Usability

Properties

GEF

Fig. 5. General approach for model-based development in the object-oriented world

 Tool Support for Representing Task Models, Dialog Models 95

4 Summary and Outlook

Concepts were discussed how task model can be made more attractive for different
communities by presenting them in different ways. Based on one single internal mod-
el different editors with different presentations and interactions can be use.

Temporal relations available in task models but missing in UML can be repre-
sented by stereotypes. This was not discussed in this paper but will be demonstrated.

During the demonstration it will also be shown how modules can be introduced into
dialog specification and how this helps to specify user interfaces for different platforms.

References

1. Berti, S., Correani, F., Mori, G., Paternò, F., Santoro, C.: A transformation-based envi-
ronment for designing multi-device interactive applications. In: Proceedings of the 9th in-
ternational conference on Intelligent user interfaces, Funchal (January 2004)

2. Brüning, J., Dittmar, A., Forbrig, P., Reichart, D.: Getting SW Engineers on Board: Task
Modelling with Activity Diagrams. In: Proc. of EIS 2007, Salamanca, Spain (March 2007)

3. CTTE, http://giove.cnuce.cnr.it/ctte.html (visited: 20.02.08)
4. Eclipse, http://www.eclipse.org/ (visited: 20.02.08)
5. EMF, http://www.eclipse.org/emf/ (visited: 20.02.08)
6. GEF, http://www.eclipse.org/gef/ (visited: 20.02.08)
7. GMF, http://www.eclipse.org/gmf/ (visited: 20.02.08)
8. MDA, http://www.omg.org/mda/ (visited: 20.02.08)
9. Mori, G., Paternò, F., Santoro, C.: Design and Development of Multidevice User Inter-

faces through MultipleLogical Descriptions. IEEE Transactions on Software Engineering,
507–520 (2004)

10. UML, http://www.uml.org (visited: 20.02.08)
11. Wolff, A., Forbrig, P., Dittmar, A., Reichart, D.: Tool Support for an Evolutionary Design

Process using Patterns. In: Proc. of the Workshop: Multi-channel Adaptive Context-
sensitive (MAC) Systems: Building Links Between Research Communities, Glasgow
(2006)

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 96–101, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Towards a Library of Workflow User Interface Patterns

Josefina Guerrero García1, Jean Vanderdonckt1, Juan Manuel González Calleros1,
and Marco Winckler1,2

1Université catholique de Louvain, Belgian Laboratory of Computer-Human Interaction,
Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium

2 IHCS-IRIT, Université Paul Sabatier, 118 route de Narbonne, Toulouse F-31062, France
{josefina.guerrero, juan.gonzalez}@student.uclouvain.be,

jean.vanderdonckt@uclouvain.be, winckler@irit.fr

Abstract. A collection of user interface design patterns for workflow informa-
tion systems is presented. Each Workflow User Interface Pattern (WUIP) is
characterized by properties expressed in the PLML markup language for ex-
pressing patterns and augmented by additional attributes and models attached to
the pattern: the abstract user interface and the corresponding task model. These
models are specified in a User Interface Description Language. All WUIPs are
stored in a library and can be retrieved within a workflow editor that links each
workflow pattern to its corresponding WUIP, thus giving rise to a user interface
for each workflow pattern. The software then gathers these UIs and the ones
corresponding to workflow tasks into a user interface flow, a new concept in-
troduced for specifying the intertwining of interfaces used by workers and the
workflow manager in a single workflow.

Keywords: design pattern, user interface description language, user interface
flow, workflow information system, workflow model editor, WUIP.

1 Introduction

Workflow is defined as the automation of business process. It allows better alignment
of Information Technology (IT) with business because organization applications can
be expressed in a way that makes sense to business users. Business users are the or-
ganization’s resources who are performing work, accomplishing business goals. As-
signing tasks to resources is complicated due to the different levels of skills they have,
for instance: experience or availability to do the task. To address the allocation prob-
lem, a collection of workflow resource patterns [9] has been identified that provide
the manner in which tasks are allocated or offered to resources. Generally a resource
needs an agenda to handle their tasks, and a manager needs to control the way tasks
are assigned and their progress. A Workflow Information System (WfIS) is a system
that defines, creates and manages the execution of workflows through the use of soft-
ware; the users of a WfIS interact with it through its user interfaces (UIs).

Developing UIs for WfIS represents new challenges today, not only for its diversity
but also because user interaction takes place in two different logical levels synchro-
nously. Interaction at the higher level means the manager specifying and designing the
system, for that purpose UIs for workflow resource patterns are needed; in addition,

 Towards a Library of Workflow User Interface Patterns 97

managers needs a UI monitoring workflow execution. Interaction at the lower level,
resources are carrying out (UIs are needed for the actual execution of tasks) their allo-
cated tasks (UIs with users agendas) whose current status is then communicated to the
manager.

This paper aims to define a library of UI patterns for WfIS addressing the afore-
mentioned challenges; the library is intended to represent the largest collection as
possible of UI design patterns that are applicable to workflow resources patterns in a
WfIS. The paper is organized as follows: Section 2 reports the state of the art, Section
3 describes the methodology for creating workflow UI patterns (WUIP), Section 4
explains how these WUIP could be then interpreted in terms of a WfIS. Section 5
presents how to link the UIs generated. Section 6 presents a conclusion of this work
and some future avenues.

2 State of the Art

A pattern is referred to as “the abstraction from a concrete form which keeps recur-
ring in specific non-arbitrary contexts” [8]. A design pattern systematically names,
motivates, and explains a general design that addresses a recurring design problem in
object-oriented systems [2]. A UI design pattern is a particular instantiation of the pat-
tern concepts in Human-Computer Interaction (HCI). According to the Pattern Lan-
guage Markup Language (PLML) that resulted from two ACM CHI workshops aimed
at defining a common format for UI patterns, a pattern is typically characterized by: a
meaningful short name, an alternate name (alias), a general description of the prob-
lem, and the solution. It also gives implementation hints and examples. Many interest-
ing works have been achieved that resulted in UI pattern collections
(www.cs.kent.ac.uk/people/staff/saf/patterns/plml.html). In HCI, UIs have been sub-
ject to the pattern-based approach [10], but also other aspects such as domain, task,
dialog, and abstract UI patterns have been considered successfully [7,10,14].

Workflow patterns refer specifically to recurrent problems and proven solutions re-
lated to the development of WfIS in particular, and more broadly, of process-oriented
applications. On the one hand, several languages have been proposed for designing,
specifying, and verifying workflow processes and patterns, and on the other hand,
there are many commercial workflow management systems where control-flow and
data-flow are well addressed. Workflow resource patterns have been identified that
capture the different manners in which resources are presented and used in workflows
[9]. The rationale for identifying these patterns was the need to master the many ways
according which work can be distributed. The researchers have developed a web site
(http://www. workflowpatterns.com/patterns/resource/) that contains descriptions and
examples of theses patterns, along with supporting tool (YAWL), papers and evalua-
tions of how workflow products support the patterns. However, not all considers
mechanisms for resource handling and they all lack from UI generation from work-
flow specifications.

In order to structure the development cycle of a workflow UI, we are relying on
FlowiXML [4], a structured method for developing UIs of a WfIS that advocates the
automation of business processes according to a model-driven engineering approach
based on the requirements and processes of the organization. Model-driven UI design
[1, 5, 6] is intended to assist designers to obtain UIs with a formal method, preferably

98 J. Guerrero García et al.

one that is computer-supported. Several works have addressed the specific need for
modeling UI for workflows [11, 12], all of them adopting a model-based approach but
none of them generating UIs.

3 Developing User Interfaces for Workflow Information Systems

The methodology is applicable: i) to integrate human and machines based activities,
in particular those involving interaction with IT applications and tools; and ii) to iden-
tify how tasks are structured, who perform them, what their relative order is, how they
are offered or assigned, how tasks are tracked.

In this section, only an overview of this method is provided, for the complete defi-
nition of the semantics and the syntax, we refer to [4, 13]. The underlying conceptual
model is composed of four models: workflow, process, task, and organization. The
workflow model is recursively decomposed into processes which are in turn decom-
posed into tasks. A process model indicates the ordering of processes in time, space,
and resources. Each process gives rise to a process model structured and ordered with
process operators. Process operators determine whether the flow of work is sequen-
tial, parallel split, exclusive choice or multiple choices, with the corresponding
merger operators, synchronization and simple merge. A task model represents a de-
composition of tasks into sub-tasks linked with task relationships. Transformations
are applied in cascade through the workflow layers using a mapping model. In order
to support the mapping between the layers, predefined relationships were used: reifi-
cation, decomposition, isExecutedIn, etc. [13].

By exploiting task models description, different solution scenarios can be modeled
[4]. Each scenario represents a particular sequence of actions to be performed. Task
models do not impose any particular implementation so that user tasks can be better
analyzed without implementation constraints; it is, even possible to analyze user ac-
tivities. Finally, the UI is derived from scenarios extracted from task models using a
transformational approach [3]. FlowiXML is compliant with the Cameleon Reference
Framework [1] for developing multi-target UIs.

4 Workflow User Interface Patterns

After having defined the methodological context in the previous section, this section
will introduce, define, and explore the original concept of Workflow User Interface
Pattern (WUIP).

We adopted the following methodology for defining the WUIPs:

1. Augmented UI pattern definition: from each workflow resource pattern a WUIP is
created and consistently described through PLML attributes. In addition to those
attributes, we also introduced the following fields that we believed that were miss-
ing from the version 1.1 of PLML: strengths, weaknesses, opportunities, and
threads (according to a SWOT analysis that is missing because PLML only incor-
porates forces), a category, an evidence scale (from 0=no evidence supports the
pattern to 5=two or more experiments support the pattern), a taxonomy of links be-
tween patterns (e.g., X uses Y in its solution, X is a variant of Pattern Y, X has a
similar problem as Y, X is related in the related patterns section to Y, X special-
izes Y, X connects to Y), bibliographic reference, domains of human activity.

 Towards a Library of Workflow User Interface Patterns 99

2. Incorporation in the model-driven engineering method: for each initial pattern
definition resulting from the previous step, a task model has been specified using
CTT notation [6]. This task model may serve as task patterns for WfIS like they
serve in related work [7, 14].

3. Final WUIPs: from the task model resulting from the previous steps, an abstract
UI and, consequently, a concrete UI have been defined in terms of the User Inter-
face Description Language (here, UsiXML) so as to form corresponding abstract
and concrete UI models. These two pairs of models have then been attached to the
current pattern definition to finally obtain a complete WUIP. Each aspect of the
abstract or concrete UI that tackles some concept incorporated in the model-driven
engineering method can now be expressed in terms of the expanded UIDL.

Applying the above methodology resulted in 43 WUIPs [3]. We give below only a
snapshot of some of these patterns for facilitating the understanding and for illustra-
tion purpose. Also, to support the application of the 43 WUIPs, a special module has
been developed in Java and incorporated in our workflow model editor, see Fig. 1.
This module B) enables the designer, while modeling the general workflow, to re-
trieve any WUIP from the library, to configure it, and to automatically incorporate it
in the current model. Therefore, instead of redefining the complete pattern in terms of
model elements found in the model editor (the workflow is defined by Petri nets), the
application of a WUIP automatically includes the corresponding definition in the
model and generates the corresponding UsiXML files for the UI that has been prede-
fined for each WUIP and for defining the workflow (being itself entirely described in
UsiXML).
Deferred allocation pattern – The ability to defer specifying the identity of the re-
source that will execute a task until runtime. Fig. 1 B reproduces how the pattern is
retrieved from the library at design-time and precisely defined in the workflow editor
(Fig, 1 A).

Fig. 1. Workflow resource pattern in design phase of workflow

B

A

100 J. Guerrero García et al.

5 Linking All User Interfaces

After having defined the UIs corresponding to the workflow patterns through the
WUIP mechanism, we still need to produce UIs corresponding to tasks found in the
process. These UIs can be produced by any appropriate method, such as [5, 6]. After
that, we need now to link all the UIs: the ones for the workflow management and the
ones for the workflow tasks. This will be achieved thanks to a new concept introduced
in this paper; the user Interface flow. During the execution of work, information
passes from one resource to another as tasks are finished or delegated; in our method
we use an agenda assigned to each resource to manage the tasks that are allo-
cated/offered to her/him, and a work list that allows to workflow manager views and
manages the tasks that are assigned to resources. By linking UIs we expect to solve
the problem of synchronizing the communication among them.

A User Interface Flow is defined as an octuple UIF (A, Σ, U, T, δ, ω, ai, ao) where
(Fig. 2 depicts it graphically):

 A is a nonnegative finite set of Abstract Containers (AC).
 Σ is a set of input events [set of events occurring in AC].

 U is a nonnegative set of user stereotypes, such that ∀ a ∈A: ∃ ! u ∈U † is

used by (a,u) [unique] or ∃ u1, u2… un ∈U † is used by {a, u1, u2… un} [a is
shared among u1, u2… un].

 T is a set of output transitions [output transitions means a navigation from start-
ing AC to a final one, we do not want to commit ourselves to a particular type or
representation].

 δ is a transition function, δ : A x Σ → A [a transition is AC + abstract event oc-
curring in one AC]

 ω is an output function, ω : A → T
 ai is the initial AC [ai ∈ A], ao is the final AC [ao ∈ A, ao ≠ ai]

Fig. 2. User interface flow

6 Conclusion

This paper introduced a library of user interface design patterns that are particularly ap-
plicable to user interfaces of workflow information systems. Each pattern is compatible

ao
ai

 Towards a Library of Workflow User Interface Patterns 101

with the literature and has been integrated in a workflow model editor. Designers are able
now to specificity resource allocation patterns using UIs that fits: both at design-time
(when everything is clear) and at run-time (when design decisions were postponed and
manager must decide how to allocate the task), considering constraints imposed by mu-
tually excluded patterns (for instance, once a task has been directed allocated it can not be
defined as deferred). Of course, these specifications can be edited before producing the
system code. The results of the modeling phase with respect to the UI viewpoint intro-
duces a the concept of user interface flow we have formally defined and illustrated
including how various users involved in the workflow will collaborate and their corre-
sponding user interface. Finally, from our previous work, we are benefit from its capabil-
ity to automatically generate UIs from specifications for both the workflow model (in this
way, it is no longer needed to redraw the definition of the pattern in terms of places and
transitions) and the user interface model (in this way, it is no longer needed to specify
again the UI supporting the workflow pattern).

References

1. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with Com-
puters 15(3), 289–308 (2003)

2. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1994)

3. Guerrero, J., Vanderdonckt, J.: Workflow user interfaces patterns. Working Paper IAG
08/08, Université catholique de Louvain, Louvain-la-Neuve (2008)

4. Guerrero, J., Vanderdonckt, J.: FlowiXML: a Step towards Designing Workflow Man-
agement Systems. Journal of Web Engineering 4(2) (2008)

5. Kristiansen, R., Trætteberg, H.: Model-Based User Interface Design in the Context of
Workflow Models. In: Proc. of Tamodia 2007, pp. 227–239. Springer, Berlin (2007)

6. Paternò, F.: Model-based design and evaluation of interactive applications. Applied Com-
puting. Springer, Berlin (1999)

7. Radeke, F., Forbrig, P., Seffah, A., Sinnig, D.: PIM Tool: Support for Pattern-Driven and
Model-Based UI Development. In: Proc. of Tamodia 2006, pp. 82–96. Springer, Heidel-
berg (2006)

8. Riehle, D., Züllighoven, H.: Understanding and Using Patterns in Software Development.
Theory and Practice of Object Systems 2(1), 3–13 (1996)

9. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow Re-
source Patterns: Identification, Representation and Tool Support. In: Pastor, Ó., Falcão e
Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer, Berlin (2005)

10. Seffah, A., Gaffar, A.: Model-based user interface engineering with design patterns. Jour-
nal of Systems and Software 80(8), 1408–1422 (2007)

11. Stavness, N., Schneider, K.A.: Supporting Flexible Business Processes with a Progression
Model. In: Proc. of MBUI 2004. CEUR Workshop, January 13, 2004, vol. 103 (2004)

12. Stolze, M.: Riand, Ph., Wallace, M., Heath, T.: Agile Development of Workflow Applica-
tions with Interpreted Task Models. In: Proc. of Tamodia 2007, pp. 2–14. Springer, Hei-
delberg (2007)

13. UsiXML, http://www.usixml.org
14. Wurdel, M., Forbrig, P., Radhakrishnan, T., Sinnig, D.: Patterns for Task- and Dialog-

Modeling. In: Proc. of HCI International 2007, vol. 1, pp. 1226–1235 (2007)

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 102–107, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Specification and Verification of Multi-agent Systems
Interaction Protocols Using a Combination

of AUML and Event B

Leila Jemni Ben Ayed and Fatma Siala

UTIC : Research Unit of Technologies of Information and Communication ESSTT, 5,
Avenue Taha Hussein, P.B. : 56, Bab Menara, 1008 Tunis, Tunisia
leila.jemni@fsegt.rnu.tn, fatma.siala@gnet.tn

Abstract. In this paper, we present a specification and verification technique
for interaction protocols in multi-agent systems using a combination of Agent
Unified Modeling Language (AUML) and the Event B method. The objective is
to improve the semi-formal representation of agents, their precedence relation
and protocol states as well as the formal analysis of safety and liveliness. The
interaction protocol is initially modeled using the AUML protocol diagram.
Then, the resulting model is translated into Event B and enriched with required
interaction protocols properties to be verified using a B powerful support tool:
B4free. In this paper, we focus on the translation process of AUML protocol
diagrams into Event B and we illustrate our technique by an example of multi-
agent systems interaction protocol.

Keywords: Multi-Agent System, specification, verification, AUML, Event B.

1 Introduction

Multi-Agent Systems (MAS) [6] are characterized by a complex behavior linked to
abundant interaction between distributed entities which exchange data and coordinate
their activities in order to achieve common goals. They require a high level of safety
and reliability. To reduce the complexity and reach a necessary degree of reliability
and safety, it would be quite interesting to lay out a specification approach which
simplifies the requirement description and deals with mathematical notations inducing
verification.

In the past few years, many research efforts have focused on the specification and
the verification of the MAS. Agent UML [9], has been proved useful for the specifi-
cation of multi-agent systems. AUML extends different diagrams of UML to model
MAS in four views, agents, environment, interaction and organization. In particular,
class diagrams in AUML model the organization and represent different agent roles
and the relations between them, statechart diagrams represent agents behaviors, pro-
tocol diagrams, which extend sequence diagrams, model the agents interactions. Other
diagrams are proposed [9] to model the indeterminism in MAS. AUML with its new
diagrams provides many advantages to agent systems design, such as simplified train-
ing and unified communication between development teams. However, AUML lacks
a precise semantic and in consequence, it does not allow verification of required

 Specification and Verification of Multi-agent Systems Interaction Protocols 103

properties of interaction protocols. On the other hand, formal methods are the mathe-
matical foundation for software. They increase the quality of applications develop-
ment and perform their reliability. Several solutions have been proposed for the
specification of MAS using formal methods. Bakam [3] proposed to model protocol
interactions in MAS with coloured petri networks. This formalism is limited by the
space explosion which requires some simplification of the model. Another work has
been proposed in [10] by Regayeg et al. to define a new language based on the Z
notation and the linear temporal logic LTL allowing specifications of the internal part
of agents and interaction protocol (communications) between agents. The use of Z
supporting tools allows to verify the specifications, but the proposed pat-
terns/formalisms do not deal with dynamics of physical worlds. Another problem in
using this solution is related to combinatorial explosion in state number in the mod-
elled system. Thought formal methods led to better precision than semi formal ones,
they are still difficult to learn and to use. This is why we need a graphical representa-
tion of such notations. As pointed out in the literature [8], an appropriate combination
of semi-formal techniques and formal methods can give rise to a practical and rigor-
ous Multi-Agent interaction protocol development method.

In this context, we propose in this paper a new specification and a verification
technique for Multi-Agent Systems interaction protocols using AUML protocol dia-
gram which give readable models and the Event B method which allows verification
of required properties related to relation between agents and protocols states. The
proposed translation gives a formal semantic for the AUML protocol diagrams using
the Event B. Then, we can rigorously verify AUML by analyzing derived B specifica-
tions also some elements can be represented in the Event B model to verify deadlock
non existence and precedence relations. In the proposed technique, the MAS interac-
tion protocols are initially modeled with AUML protocol diagrams. After that, the
resulting graphical and readable model is translated into Event B in incremental de-
velopment. This resulting model is enriched by relevant properties (safety (deadlock-
inexistence), liveliness (precedence relation), strong fairness, etc) which will be
proved using a B powerful tool, like B4free [4]. Other works proposed the use of
semi-formal and formal methods for the design of interaction protocols in MAS.
Hilaire et al. [7] proposed a general framework for modelling MAS that focuses on
organisational aspects. Authors define OZS as a formal notation combining Object-Z
and statecharts, in order to represent agents, their behaviors and their interactions.
However this model does not address dynamical aspects of MAS. Fadil and Koning
[5] proposed a solution combining AUML with B AMN (Abstract Machine Notation)
[1]. Our work, which combines the use of AUML and Event B, is near to the one of
[5]. However, we propose translation rules for the concepts of AUML into the nota-
tion of the Event B [2] which is more adapted than the B AMN to the specification of
MAS as reactive systems. Also, there is a semantic equivalence between messages
and interactions in AUML protocol diagram and events in Event B which does not
exists with operations in B AMN because operations may be called by the environ-
ment. Each agent reacts following an event which can be for example a received mes-
sage. In this paper, we present the proposed technique using the combination of
AUML protocol diagrams and Event B, a sub set of rules translating messages, agents
and relations between messages into Event B. By an example of a Contract-Net pro-
tocol [9], we illustrate our approach.

104 L. Jemni Ben Ayed and F. Siala

2 The Proposed Technique

The proposed specification and verification technique consists of three steps as shown
in Fig. 1. In the first step, the system is modeled graphically with AUML protocol
diagram. In the second step, the obtained AUML model is translated into Event B
specification using proposed translation rules. Finally, in the third step, the properties
are checked from the obtained global system specification using the B4free tool [4].
Due to space limitation we will not present all the proposed rules but some of them
and we use the Contract Net Protocol example [4] to illustrate them.

Fig. 1. The proposed approach

Step 1: Specification with the AUML protocol diagram.
Fig. 2 presents the general AUML structure and the Contract Net protocol diagram.
Step 2: Translation into Event B. Our main contribution concerns this step which is
divided into three sub-steps (Fig. 1): The construction of the B machine static part, the

Fig. 2. The protocol diagram

 Specification and Verification of Multi-agent Systems Interaction Protocols 105

construction of the B machine dynamic part and the generation of the invariants
describing required properties. These invariants will be verified at the third step with
a B tool by proving that the initialization verifies invariants and that every event, if it
holds, it preserves invariants.

Construction of the static part: The basic units of the static part are agents, messages
and roles.

Rule1. This rule is applied to generate the B machine static part (Fig. 3):
1. From agents, their messages and roles we generate three sets AGENTS which cor-

responds to agent’s roles, MESSAGES which corresponds to all messages and
STATES_E which ccorresponds to different states of the system.

2. We add three types of variables: exchanged_msg, hand_name_event and ett. ex-
changed_msg describes the exchanged messages between agents. It takes the
(sender, message, receiver) form. For each system state, identified by the event
name, we generate a new variable hand_name_event. This variable takes the value
1 when the event holds and 0 in the other case. The variable ett represents system
states.

3. We initialize the variable exchanged_msg to an empty set, each variable
hand_name_event to 0 and the variable ett to event_begin in the INITIALISA-
TION clause. For the example in Fig 2.b, we obtain the specification in Fig. 3.

MODEL MCnetprotocol
SETS AGENTS = {initiator, participant};
 MESSAGES ={cfp ,propose, refuse, n_understood, reject, accept, inform, failure} ;

STATES_E={evt_cfp, evt_d_prn, evt_prn, evt_p, evt_r, evt_n, evt_d_ra, evt_ra, evt_d_if, evt_if, evt_i,
evt_f, evt_d_evt, evt_a, evt_b, evt_c, evt_t, evt_end, evt_begin};

VARIABLES
Exchanged_msg, protocol, hand_cfp, hand_d_prn, hand_prn, hand_p, hand_d_ra, hand_ra, hand_d_if,
hand_if, hand_i, hand_d_e, hand_a, hand_b, hand_c, hand_t, ett

INVARIANTS
exchanged_msg AGENTS (MESSAGES AGENTS)|| hand_cfp N || hand_d_prn N ||
hand_prn N || hand_p N ||hand_d_ra N || hand_ra N || hand_d_if N || hand_if N ||
hand_i N || hand_d_e N || hand_a N || hand_b N || hand_c N || hand_t N || ett STATES_E

INITIALISATION
Exchanged_msg := || hand_cfp:=0 || hand_d_prn:=0 || hand_prn:=0 || hand_p:=0 || hand_d_ra:=0 ||
hand_ra:=0 || hand_d_if:=0 || hand_if:=0 || hand_i:=0 || hand_d_e:=0|| hand_a:=0|| hand_b:=0||
hand_c:=0|| hand_t:=0|| ett:=evt_begin

Fig. 3. The static part of the Event B model

Construction of the dynamic part: The dynamic part is derived from simple or
complex messages and protocol states. The result appears in the clause EVENTS.

Rule 2. The simple messages: Each message is added as an event. The result for the
case of the CFP (Call For proposal) is given in Fig. 4. The guard of this event is the
system state (using ett) and its action adds to the variable exchanged_msg, the new
message and changes the value of the system state.

Rule 3. Event occurrence: For each new event name_event we generate a new vari-
able hand_name_event. This variable takes the value 1 if the event occurs and 0 in
the other case.

106 L. Jemni Ben Ayed and F. Siala

event_cfp = SELECT ett=evt_begin THEN Exchanged_msg:=exchanged_msg ∪
 {initiator {cfp participant}} || ett:= evt_cfp END ;

Fig. 4. Translation of a simple message

Rule 4. Complex messages: AUML contains three complex messages types: XOR, AND
and OR. For each message XOR, which generates M1, M2,…,Mn messages, we add two
events, the first event Detect_M1_.._Mn detects one of the messages. For our example,
Detect_propose_r_n is the detection event (Fig. 5). The second event event_M1_…_Mn
send the selected message (event_propose_refuse_nunderstood (Fig. 5).

For each message, we assume that the protocol passes through four states: end; ac-
tive; error and wait. We add a new set (STATES_P = {end, active, error, wait}) and a
variable protocol modeling protocol states. The action of the event associated to this
message will be updated by adding (protocol:=v) where v ∈ STATES_P. The vari-
able protocol takes the value active since the negotiation messages (Call For Proposal,
inform,…); end on the receipt of a refuse, cancel or agree message; error on the
receipt of failure message and wait in the case of an XOR message where each ele-
mentary message makes the protocol in different states. As shown in Fig. 5, CFP is a
negotiation message then we update event_cfp, by adding (protocol:= active).

Detect_propose_r_n = SELECT hand_cfp=1 ∧ hand_d_prn=0 ∧ ett=evt_cfp
 THEN ANY ee WHERE ee∈ {propose,refuse, n_understood} THEN msg3:=ee END||
 hand_d_prn:=1|| ett:= evt_d_prn END ;
event_propose_refuse_nunderstood = SELECT hand_d_prn=1 ∧ hand_prn=0 ∧ ett=evt_d_prn
 THEN Exchanged_msg:=exchanged ∪ {participant {msg3 initiator}} ||

 hand_prn:=1 || protocol:=wait || ett:=evt_prn END ;
event_propose = SELECT hand_prn=1 ∧ hand_p=0 ∧ ett=evt_prn ∧
 exchanged_msg(participant)={propose initiator}

 THEN protocol:=active || hand_p:=1 || ett:= evt_p END;
event_refuse = SELECT hand_prn=1 ∧ hand_p=0 ∧ ett=evt_prn ∧
 exchanged_msg(participant) = {refuse initiator}

 THEN protocol:=end || hand_p:=1 || ett:= evt_r END;
event_n_understood = SELECT hand_prn=1∧ hand_p=0 ∧ ett=evt_prn ∧
 exchanged_msg(participant) ={n_understood initiator}

 THEN protocol:=error || ett:=evt_n || hand_p:=1 END ;

Fig. 5. Translation of the protocol states with a complex message

Fig. 5 shows the translation of the XOR message event_propose_refuse_nunderstood
which detects one of its elementary messages: propose, refuse and not_understood.

Rule5. The Deadlock: When no event can be triggered, the system is blocked. That is
the deadlock problem. Especially the situation holds when the two conditions: proto-
col is active and (time >= time_out) are verified. To solve this problem, we add a

OFF= SELECT protocol=active ∧ (time ≥ time_out) THEN protocol:=end || ett:=evt_fin END;
ON= SELECT protocol=end ∧ time< time_out THEN protocol:=active || ett:=evt_begin END

Fig. 6. Added events to avoid deadlock

 Specification and Verification of Multi-agent Systems Interaction Protocols 107

new event OFF, which puts the protocol to end under these conditions and the event
ON to ensure the resumption of protocol. Fig. 6 shows the result for the example.

Fill up the system with properties: In this step, we enrich the model with invariants
describing properties. One of them could express that whenever the system is in a
considered state, the protocol takes a certain value. For example, if the system is in
CFP state then the protocol is active: (ett=evt_cfp) ⇒ (protocol= active).

3 Conclusion and Perspectives

In this paper, we have proposed a specification and verification technique translating
AUML protocol diagrams into Event B. This allows one to rigorously verify AUML
models by analyzing derived Event B specifications and to prove that the modeled
protocol respects all safety and liveliness constraints. We have presented some of the
proposed translation rules for AUML protocol diagrams into Event B and we have
illustrated them over the Contract-Net Protocol example. Our future focus shall con-
sists of considering more dynamic properties, proving the correctness of the set of
translation rules and developing a tool supporting proposed technique to ensure the
systematic verification of required properties.

References

1. Abrial, J.-R.: The B book: Assigning Programs to Meanings. Cambridge University Press,
Cambridge (1996)

2. Abrial, J.-R.: Extending B without changing it (for developing distributed systems). In:
First B Conference, Putting Into Practice Methods and Tools for Information System De-
sign, France, p. 21 (1996)

3. Bakam, I., Kordon, F., L-Page, C., Bousquet, F.: Formalization of a specialized multi-
agent system using coloured petri nets for the study of a hunting management system. In:
Rash, J.L., Rouff, C.A., Truszkowski, W., Gordon, D.F., Hinchey, M.G. (eds.) FAABS
2000. LNCS (LNAI), vol. 1871, pp. 123–132. Springer, Heidelberg (2001)

4. Clearsy, http://www.b4free.com/download.htm
5. Fadil, H., Koning, J.-L.: Vers une spécification formelle des protocoles d’interaction des

systèmes multi-agents en B. In: 6eConfrence Francophone de MOdlisation et SIMulation;
MOSI 2006, Maroc (2006)

6. Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence.
Addison-wesley Professional, Reading (1999)

7. Hilaire, V., Koukam, A., Gruer, P., Muller, J.-P.: Formal specification and prototyping of
multi-agent systems. ESAW000. In: Proceedings of the First International Workshop on
Engineering Societies in the Agent World, London, pp. 114–127 (2000)

8. Jemni Ben Ayed, L., Hlaoui Ben Daly, Y.: Translating Graphical Conceptual Model from
STATEMATE to FNLOG. In: IEEM 2007: IEEE International Conference on Industrial
Engineering and Engineering Management, Singapore (2007)

9. Odell, J., Van Dyke Parunak, H., Bauer, B.: Extending UML for agents. In: Proceedings of
the Agent-Oriented Information Systems Workshop at the 17th National conference on Ar-
tificial Intelligence. ICue Publishing, Texas (2000)

10. Regayeg, A., Kacem, A.-H., Jmaiel, M.: Specification and verification of multiagent ap-
plications using temporal Z. In: Intelligent Agent Technology Conference (IAT 2004), pp.
260–266. IEEE Computer Society, China (2004)

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 108–120, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Pattern Languages as Tool for Discount
Usability Engineering

Elbert-Jan Hennipman, Evert-Jan Oppelaar, and Gerrit van der Veer

Open Universiteit, School of Computer Science, Valkenburgerweg 177,
6419 AT Heerlen, The Netherlands

ehn@ou.nl, oppelaar@gmail.com, gvv@ou.nl

Abstract. Despite growing pattern collections in the field of Human-Computer
Interaction (HCI), both on the Internet [1-3] and in books [4, 5], these collec-
tions have usability problems when being used by those software engineers,
who lack expertise in human-centered design. In this paper we report on the de-
velopment of a tool that is intended to improve accessibility and usability of
HCI design patterns for engineers. We aim at a tool that is simple and safe to be
used without expert knowledge. Such a tool can be used in what could be la-
beled “discount usability engineering”. A new type of HCI pattern language
combined with a supportive tool is intended to overcome some of the gaps these
engineers have in HCI-background.

Keywords: Discount usability engineering, design pattern languages, HCI.

1 Introduction

“A design pattern is a structured textual and graphical description of a proven solution
to a recurring design problem” [6 (p. 7)]. Considering that definition, it can be stated
that using design patterns supports making good design decisions. It is important to
note that a proven solution only means that the solution works; it does not guarantee
that it is the best solution. A single design problem may have different solutions de-
pending on a given context [4, 6].

HCI design patterns are a specific case of proven design knowledge. Different from
other types of patterns, HCI design patterns can be considered solutions for end-user
problems, which are in fact only indirectly problems of the designer [4, 7-9].

At the Interact ’99 patterns workshop the purpose of using HCI design patterns was
formulated as follows (we inserted the italics to stress the distinction): ‘The goals of
HCI design pattern languages are

• to share successful HCI design solutions among HCI professionals
• to provide a common language for HCI design to anyone involved in the design,

development, evaluation, or use of interactive systems’ [10]

While “sharing” includes the discovery or development of patterns as well as its use, the
second bullet points to use in practice of established patterns specifically. We aim at the
second group of stakeholders for HCI patterns - anyone involved in the design, devel-
opment, evaluation or use of interactive systems. This broad group of stakeholders

 Pattern Languages as Tool for Discount Usability Engineering 109

should be able to use these pattern languages as well. This group includes professional
programmer-designers, who often in fact are novices in HCI. They will often be found
in small ICT companies and in larger companies with a small ICT department. Cur-
rently these companies have a problem: the software engineers and programmers they
employ happen to be responsible for Interaction Design and User Interface Design,
mostly without adequate specialized education for this. Sometimes, the management of
these companies does not even value user-centered design or mistakes this for ‘visual
design’ [11], and, in most cases, no budget is (made) available for usability engineering.
These professional programmer-designers should be enabled to make responsible use of
pattern languages.

This group of stakeholders needs a tool that supports design decisions. Borchers
and Thomas [12] hint in this direction with their question for the discussion panel at
CHI 2001 ‘Who are HCI design patterns for, and what should they be used for – as
Design Rationale, to replace standards or guidelines, or for training in industry and
academia?’

Contrary to the goal of HCI design patterns, Seffah and Javahery [13] found that
software developers ‘experience difficulty when attempting to understand, master and
apply a specific pattern in their context’. Segerståhl and Jokela [9] found usability
problems when pattern collections were used by engineers.

Our project has the flavor of discount usability, but the effect will be different from
the approach of Nielsen [14]. Where his approach takes care of saving costs of differ-
ent usability evaluation steps, our approach is to improve the design decisions of non-
experts in usability design.

2 Background

Johnson [11] indicates that usability is often addressed very late in the development
stage, shortly before release. Frequently, software engineers find themselves responsible
for the Interaction Design during the development, doing ‘the best they can under ad-
verse circumstances’ that ‘are created by their management’ [11]. We don’t advocate
the idea of software-engineers being responsible for Interaction Design, but, considering
the fact that this is still common practice, they can use all the help they can get.

The use of patterns is becoming common in many engineering domains, including
both Software Engineering and HCI. We expect that software engineers will be able
to make better Interaction Design decisions if they can use HCI design patterns effec-
tively. The existing usability issues with usability patterns need to be taken care of to
make that possible.

2.1 Rationale for the Use of Patterns

There are multiple reasons to choose design patterns for transferring design knowl-
edge:

• using patterns is a familiar activity for software engineers, because patterns have
been around and in use in Software Engineering (SE) since about 1995 [15]

• the use of HCI design patterns was found ‘highly beneficial’ by software develop-
ers in an empirical study by Seffah and Javahery [13]

110 E.-J. Hennipman, E.-J. Oppelaar, and G. van der Veer

• HCI design patterns are considered to be more effective in transferring knowledge
than guidelines, because of the structural way in which problem, context, solution
and rationale are connected and discussed [16]. Guidelines have usability issues
because they often describe do’s as well as don’ts [17]. Patterns formulate exam-
ples of good design.

• a volume of practical design knowledge is publicly available and accessible in pat-
tern collections online [1-3] and in books [4-6]. There is a critical mass of knowl-
edge waiting to be used

• relations between patterns make it possible to dynamically create different views
on patterns for different tasks and domains, as well as to structure these patterns
around a certain problem or in a certain hierarchy

2.2 Usability of Usability Patterns

The usability of HCI design patterns (or usability patterns - there is a mixed use of
terminology) has been studied by Seffah and Javahery [13], who identified three main
issues that need to be addressed:

1. there is no universally accepted standard for describing HCI design patterns, and
the narrative character makes them ambiguous and abstract (as are guidelines)

2. there is no tool support for usability patterns engineering
3. software developers have trouble translating the patterns between different plat-

forms (such as handheld, web and software interfaces)

Segerståhl and Jokela [9] did an empirical evaluation of the usability of HCI design
patterns, resulting in a detailed list and in recommendations for improvement. We
decided to add the issues identified by Segerståhl and Jokela:

4. none of the existing pattern collections covered all their problem cases
5. existing pattern collections focus on different levels of the design process, such as

task (search) or representation (visual design)
6. the naming of HCI design patterns was in some cases inconsistent and difficult to

learn
7. a standard way of organizing, grouping and categorizing HCI design patterns is

still lacking
8. the same patterns appears with different name when described for a different plat-

form

Fincher et al. [18] indicate that “little is understood about the activities involved in
both creating and using patterns”. One such activity is formulating a problem state-
ment, and according to Borchers [6 (p. 68)] “it turns out that this part is often the
most difficult one to write in a pattern”. For the engineers we focus on, it is even more
difficult to formulate a problem statement in the field of HCI, because that is not their
expertise. Therefore we add three more usability issues:

9. there is little to no explicit knowledge about the activities involved in creating
and integrating HCI design patterns in current pattern tools

10. there is little to no explicit knowledge about the activities involved in using patterns
11. it is hard for engineers to formulate a problem statement with the end-user in

mind

 Pattern Languages as Tool for Discount Usability Engineering 111

2.3 Relevant Questions

Summarizing the usability issues mentioned above, there are several questions that
need answering. When designing and creating a tool meant for knowledge transfer
from usability design experts to engineers who are novices in HCI, it is important to
externalize the relevant internal knowledge of the experts, resulting in the following
questions for the experts:

1. What are the activities involved in the creation of patterns, how does this relate to
the approach and focus of the pattern?

2. How can we externalize the internal knowledge HCI-experts apply when using
HCI design patterns, in terms of problem statement and search behavior?

To create a pattern management and exploring tool where experts can create new
HCI design patterns and HCI experts and Software Engineers alike can use them con-
sistently, there are questions for an interchangeable pattern format:

3. What is the best way to standardize pattern formatting in terms of organizing,
grouping, categorizing, structuring, naming and describing a pattern?

4. Are HCI design patterns platform-specific (e.g. considering target systems with
small-screen vs. big-screen, mobile vs. desktop) and if so, how should this be ad-
dressed?

We envision a final answer resulting in a decision support tool that uses HCI de-
sign patterns to guide problem analysis, problem formulation and problem solving.

3 HCI Design Patterns

There is no strictly defined use of the terms interaction design patterns, user interface
design patterns, usability patterns, HCI design patterns and variations of these [19].
What all these terms have in common is that they describe design patterns that are
relevant in HCI.

There are several ‘living’ pattern collections in the field of HCI, some of which
have the construct of a pattern language. We define a pattern collection as any set of
patterns, often with some categorization. A pattern language is an interconnected set
of patterns [20], organized and structured in a meaningful way from the point of view
of the user of the set [21]. If there are enough means to interconnect patterns, a single
pattern could be part of different pattern languages. Over the past few years the effec-
tiveness of pattern languages in their current format have been discussed, and sugges-
tions for extension and improvement have been made [7, 22].

Certain aspects of patterns are relevant for answering the questions formulated in
section 2, mainly the different approaches to HCI design patterns, pattern language
markup language, the relation of HCI patterns to Software Engineering and the exis-
tence of anti-patterns. We will deal with each of these aspects in this section.

3.1 Approaches to Patterns

There is no universally accepted classification for HCI design patterns. Consequently,
different collections each have their own approach [9].

112 E.-J. Hennipman, E.-J. Oppelaar, and G. van der Veer

The approach or view that is most appropriate for the task at hand is determined by
the Interaction Designer when searching and browsing through the pattern collection
[23]. Though not explicitly defined, some approaches can be identified.

Layered approach
Some HCI pattern collections are based on a view of the user interface (or Human-
computer interaction) comprising layers [24-26]:

Task Layer. This relates to task-description patterns. These patterns describe solu-
tions conceptually. An example would be the ‘multi-level undo’-task 1.

Semantic Layer. Bridging patterns relate strongly to this layer [19]. A bridging pat-
tern describes the needed assets in software engineering to accommodate a certain
user-task. The patterns in this level describe a solution in terms of entities and possi-
ble operations on these entities.

Syntactic Layer. This relates to action-description patterns. These patterns describe
solutions on a lower level, in terms of dialogues like form filling, wizard, and pull
down menus. These are found in several pattern collections [2, 3].

Representation Layer. This considers visual representations, choice of labels, de-
sign of icons, etc. We will not consider patterns on this level in our project, though
they do exist (e.g. in the designing interfaces collection [3]).

Perspective-based approach
Another approach is perspective-related, making a primary distinction between user
initiated actions and system initiated actions [23]:

End-user initiated action. Patterns in this category are about enabling the end-user
to do something or to avoid something. E.g., the Language Selector 2 pattern, describ-
ing the end-users’ need to select a preferred language and a solution to that problem.

System initiated action. Patterns in this category are about a problem in the com-
munication of the system to the end-user. The user needs to perceive, understand or
know something, and this pattern describes a way of doing that for the given situation
and context. E.g., the progress indicator 3 pattern, describes the solution to ‘how to
show the progress of the system on a time-consuming operation’.

In some patterns these two orientations are merged, e.g. the autocomplete 4 pattern.
The autocomplete pattern describes the situation in which an end-user problem (un-
certainty in filling forms) and a system problem (preventing input of incorrect infor-
mation) merge.

Context of design approach
In this approach, patterns are grouped according to their use in a certain context, such
as a specific domain (e.g. the museum pattern 5) or with a specific purpose (e.g. the
community building pattern 6).

1 http://www.designinginterfaces.com/Multi-Level_Undo
2 http://www.welie.com/patterns/showPattern.php?patternID=language-selector
3 http://www.designinginterfaces.com/Progress_Indicator
4 http://www.welie.com/patterns/showPattern.php?patternID=autocomplete
5 http://www.welie.com/patterns/showPattern.php?patternID=museum
6 http://www.welie.com/patterns/showPattern.php?patternID=community-building

 Pattern Languages as Tool for Discount Usability Engineering 113

Functionality based approach
In this approach patterns are grouped according to their functionality. Each group
contains related patterns in the same functional area, such as ‘showing complex data’
or ‘getting around’. This approach is found in the designing interfaces collection by
Tidwell [3].

Different approaches work in different situations. Consequently Van Welie and
Van der Veer [21, 23] suggest not to choose a specific approach, but to enable multi-
ple approaches. When patterns are interconnected correctly, each approach becomes a
pattern language in itself, because of the internal coherence and meaningful structure
and organization.

Pattern languages support a more problem oriented way of browsing and searching
than pattern collections as such, and, hence allow more efficient problem solving.

3.2 PLML

In an effort to create more unified, accessible pattern languages, the Pattern Language
Markup Language (PLML) was introduced in 2003 [27]. The online pattern collection
of Welie [2] uses PLML v1.1. PLML is becoming the most universally accepted for-
mat to describe HCI patterns. The use of XML makes them relatively easy to ex-
change. There are disadvantages as well:

• PLML has very few mandatory elements, what makes it flexible, but does not en-
courage structured pattern creation

• Patterns described in PLML are still highly narrative, which sometimes causes us-
ability problems [13]

• There is little semantics in the area of pattern relations (only three types of relations
are defined). This makes the patterns harder to search and filter systematically. Sev-
eral additional types of relations have been identified that could be relevant, such as
‘equivalent, superordinate, subordinate, competitor, and neighboring’ [13].

An extended version of PLML (PLMLx) has been proposed by Bienhaus [28] but
Fincher [29] addressed concerns dealing with too many elements becoming manda-
tory. More recently Deng et al. [30] proposed PLML v1.2. This newer version enables
a richer description of patterns and pattern-attributes (most importantly forces and
changelogs), to be used with the pattern management tool MUIP. PLML v1.2 has not
been adopted broadly yet.

PLML is a good candidate answer to our question 3 in section 2.3 ‘What is the best
way to standardize pattern formatting in terms of organizing, grouping, categorizing,
structuring, naming and describing a pattern?’, though not in its current form. We
will adapt the newer PLML version to our needs.

3.3 Relating HCI Patterns to SE

A study by Bass and John [31] reveals that some interaction concepts have dependen-
cies in software architecture. They have analyzed these using a scenario-based ap-
proach. The same issue was found by Folmer, Van Welie and Bosch [19]. Their solution
to closing the gap between interaction concepts and software engineering is introducing
bridging patterns. These patterns describe the minimal essential software architecture to

114 E.-J. Hennipman, E.-J. Oppelaar, and G. van der Veer

accommodate certain user tasks (such as ‘multilevel undo’). From our point of view, this
is an interesting addition, considering the background of our target group. This explicit
combination will appeal to the software engineer, because the implications of interac-
tion design decisions for the software architecture become clear instantly.

These patterns are also useful in the layered approach at semantic level, describing
the problem in terms of entities and operations on these entities.

3.4 Use of Anti-patterns

Biljon et al. [17] have investigated the use of anti-patterns. The intention of anti-
patterns is to avoid common pitfalls, but the conclusion of Biljon et al. [17] is that
anti-patterns can actually create pitfalls. The cognitive processing of anti-patterns has
to deal with negation. They strongly argue not to use anti-patterns, unless the positive
pattern has been firmly established. Taking into account that we will be developing
for engineers - professionals, but not in HCI - the use of anti-patterns is not consid-
ered useful in our project.

4 Pattern Design and Management

Managing and maintaining patterns and pattern collections is especially relevant for
patterns that are published on the Internet. Online knowledge can easily be main-
tained, preventing it from getting stale and being outdated. The Internet has the affor-
dance of being up to date. This is a blessing and a curse: there needs to be commit-
ment to keep the pattern-base up to date, because it is expected to be. Our project is
meant to be maintained (by the Dutch Open University that will consider our product
a standard part of Computer Science public domain adult education) and validated by
HCI experts (the program board of our sponsoring foundation), and relies partly on
the commitment of that community.

Pattern design faces several problems, e.g., (4.1.) how to provide characteristic and
explaining names for the engineer to choose from [9]; (4.2) how to identify and de-
scribe forces and context [6]; (4.3) how to formulate the problem statement [6]; and
(4.4) how to create meaningful relations to other patterns [13].

We will demonstrate the difficulties of developing patterns with examples from the
Interaction Design Patterns collection by Welie [2].

4.1 Labeling Patterns: Externalizing and Formalizing Problems

Novices in HCI will encounter difficulties to externalize and formalize their ideas of
interface problems into a problem statement that fits the pattern collection used. Cur-
rent HCI design patterns are often titled by the solution and not the problem. Patterns
are usually indexed or listed by their title, therefore defeating part of their purpose.

In figure 1 the title autocomplete does not give away anything about the problem
that is being solved, but refers to the solution. Using the alias-element in PLML, both
making the problem recognizable, and revealing the solution, can be realized. E.g. the
alias ‘user uncertainty’ adds problem-related meaning to the title.

 Pattern Languages as Tool for Discount Usability Engineering 115

Fig. 1. An excerpt from the autocomplete pattern 7 illustrating a bad choice for a pattern title

4.2 Conditions for Pattern Matching: Analysis of Context and Forces

A problem can have different solutions in different contexts. Sometimes alternative
solutions for a single problem are in fact patterns on their own. In fact the context has
both a recurring part and a differentiating part. These patterns are not really a single
pattern.

In figure 2 we see that ‘dozens of ways’ are indicated and the three most common
solutions are presented. This is a typical case of the narrative character of patterns
standing in the way of clear semantics and relations. All three (or even “dozens”) so-
lutions should be presented as separate patterns, related to the aggregate pattern by
means of an ‘is-a’ relationship.

In the same way, each solution will have a different impact on “conflicting forces”
[32]. Forces are arguments in favor or against a certain solution. Borchers [6 (p. 68)]
labels them ‘conflicting interests’. A specific solution has consequences in geometri-
cal layout (screen size), usability (a visual cue when new email arrives is of no use for
visually impaired end-users), cognitive aspects (fit to the user’s mental model), and
system performance (processor load). The use of forces is an answer to our question 4
in section 2.3. Different platforms have different forces, and defining these forces
correctly will enable identifying a pattern that fits the platform.

Fig. 2. An excerpt from the Main Navigation pattern 8 illustrating the need for greater pattern
separation

4.3 Formulating Problem Statements

As Borchers [6] indicated, formulating the problem statement is one of the most diffi-
cult parts in creating a pattern.

7 http://www.welie.com/patterns/showPattern.php?patternID=autocomplete
8 http://www.welie.com/patterns/showPattern.php?patternID=main-navigation

Title: Autocomplete
Problem: The user wants to enter a label that is part of a large set
Solution: Suggest possible label names as users are typing …

Title: Main Navigation
Problem: Users need to know where they can find what they are looking for.
Solution: Place an always visible menu at a fixed position on the page. Sup-

port this main menu with additional navigation tools
Context: All sites need some form of main navigation
How: There are dozens of ways to design the main navigation for your site.

However, the most common ones are the Horizontal Menu and Vertical
Menu or Inverted L Menu. The choice (…) must be based on the informa-
tion architecture for the site (…other constraints mentioned…)

116 E.-J. Hennipman, E.-J. Oppelaar, and G. van der Veer

Fig. 3. An excerpt from the Fly-out Menu pattern 9 illustrating how problems and forces are
intertwined

In figure 3 we see an example of a problem statement that consists of two parts: a
problem statement (users need to have direct access to sub-navigation), and one of the
active forces (the amount of screen estate for navigation is limited). Separating these two
(problem statement and forces) will improve browsing and searching patterns.

4.4 Creating Meaningful and Relevant Relations between Patterns

The pattern collection by Welie [2] is interconnected by means of pattern-links. The
previously mentioned Main-Navigation pattern links to the Fly-out Menu pattern, but
not vise-versa. These links have no specific meaning, other than ‘there is some kind
of relation between these patterns’. Often patterns are only linked one-way.

Creating a construct to describe meaningful relations will improve both creating
and using patterns, as was found by Seffah and Javahery in the UPADE project [13].

4.5 Putting It Together

This suggested restructuring, formalization, and categorization of patterns will help our
target audience of novice HCI designers to identify, as well as understand, the relevant
patterns based on target end-user group (relevant knowledge, skill, experience, and cul-
ture), targeted experience, available system resources, and available screen size.

These are now usually implicitly noted in the textual description of context, or
even left out if considered trivial (to HCI experts).

5 Requirements

Ultimately, we will combine our efforts in improving HCI pattern usability into a
platform (website) where HCI patterns are presented in such a way that they are:

• Manageable by experts (to make sure only validated patterns appear)
• Public domain
• Usable as tools in usability engineering for software engineers
• Guide the engineers in making the right design decisions:

• Guiding in problem analysis
• Guiding in problem formulation
• Guiding in problem solving

9 http://www.welie.com/patterns/showPattern.php?patternID=fly-out-menu

Title: Fly-out Menu
Problem: Users need to have direct access to sub-navigation but the amount

of screen estate for navigation is limited
Solution: Combine horizontal navigation with a sub-menu that flies-out when

the users hovers over the main menu-item

 Pattern Languages as Tool for Discount Usability Engineering 117

• Accommodate different approaches, as proposed by Van Welie and Van der Veer
[21, 23]

• Inviting to software engineers

This aims at a better end-user-experience of the products (websites, applications)
being created [7].

6 Project Phases

Our research is a continuation of Van Welie, Van der Veer and Eliëns [16], and seeks
to involve model-based user interface (UI) engineering using design patterns as advo-
cated by Ahmed and Ashraf [22]. Both these sources focus on the end-user and apply
a task based approach, and so will our project.

Our project is three-tiered. First we need to externalize knowledge that HCI experts
have on creating and using HCI patterns. Secondly, we need to create a solid pattern
base and a tool to use and maintain these patterns. Thirdly, we need to evaluate, im-
prove and extend the pattern base and tool, by adding more domains.

6.1 Externalizing Expert Knowledge

Both creation and use of design patterns is common practice amongst HCI experts.
The implicit knowledge of HCI experts needs to be externalized to become useful for
software engineers. We will do this by asking some HCI experts to create a pattern
and describe their thoughts and actions using a think aloud protocol. The same ap-
proach will be taken to externalize knowledge on the use of HCI patterns. That is the
first phase of our project, and will answer questions 1 and 2 from section 2.3. Our aim
is mainly to capture the essence and conceptual model behind creation and use of de-
sign patterns, and to integrate this in a tool.

6.2 Development of a Single-Domain Based Tool

In the second phase, we will develop a design guidance tool that provides a solid pat-
tern base and the necessary functionality. The tool will use the findings of the first
phase to guide software engineers in the use of HCI patterns. Initially we will focus
on one domain for which a pattern language is publicly available. In our case this is
the museum website domain [33, 34], and our focus will be galleries and smaller
museums.

The tool will also have the ability to manage patterns in a guided way, to make
sure that the result is usable. The tool will be designed in an iterative way with re-
peated evaluation of the prototype by engineers with, as well as without, HCI exper-
tise. During this iterative development, evaluation of the prototype will be done
through well established usability analysis techniques (e.g. observations, interviews,
heuristic evaluations, and usability tests with the System Usability Scale [35, 36]).
The software development will be based on the Agile method [37] to incorporate di-
rect feedback and multiple iterations.

118 E.-J. Hennipman, E.-J. Oppelaar, and G. van der Veer

6.3 Broadening the Scope

The final step will be to broaden the scope of our project, and introduce more do-
mains. In this phase, the project will be made available in the public domain, and it-
eratively improved to being used in the wild.

We will present this tool in Q1 of 2009.

7 Summary

In this paper we address the need for ready-to-use design knowledge for those soft-
ware engineers who lack expertise in human-centered design. That was one of the
original goals of HCI design pattern languages, but several studies and our experience
learn that this goal has not been achieved (yet). In 2.3 we elicited four main questions
about the creation of HCI design pattern languages, and about the use of these pattern
languages.

The first two questions address the need to externalize expert knowledge in use as
well as creation of patterns. In paragraph 6.1 we describe the use of a think aloud pro-
tocol to elicit this “internal” knowledge.

Question 3 addresses the need of pattern standardization and relevant pattern lan-
guages, to enable the systematic use thereof. In paragraph 3.2 we introduce PLML as
an approach to this question.

Question 4 addresses the need of a platform independent use of HCI design pat-
terns. In paragraph 4.2 we find that forces can be used to describe platform-specific
characteristics and enables pattern creators to specify platform specific as well as plat-
form independent patterns.

Acknowledgements

This research has been supported by SenterNovem, an agency of the Dutch Ministry
of Economic Affairs.

References

1. Yahoo! Design Pattern Library, http://developer.yahoo.com/ypatterns/
2. Patterns in Interaction Design, http://www.welie.com/
3. Designing Interfaces, http://www.designinginterfaces.com/
4. Tidwell, J.: Designing Interfaces. O’Reilly Media, Inc, Sebastopol (2005)
5. Van Duyne, D.K., Landay, J.A., Hong, J.I.: The Design of Sites: Patterns, Principles, and

Processes for Crafting a Customer-centered Web Experience. Addison-Wesley Profes-
siona, Reading (2003)

6. Borchers, J.: A Pattern Approach to Interaction Design. John Wiley & Sons, Chichester
(2001)

7. van Welie, M., Trætteberg, H.: Interaction Patterns in User Interfaces. In: PLoP 2000 con-
ference (2000)

8. Buschmann, F.: Series Foreword, pp. xiii-xv. John Wiley & Sons, Chichester (2001)

 Pattern Languages as Tool for Discount Usability Engineering 119

9. Segerståhl, K., Jokela, T.: Usability of interaction patterns. In: Conference on Human Fac-
tors in Computing Systems, pp. 1301–1306 (2006)

10. Borchers, J.O., Fincher, S., Griffiths, R., Pemberton, L., Siemon, E.: Usability pattern lan-
guage: Creating a community. AI & Society 15, 377–385 (2001)

11. Johnson, J.: GUI Bloopers 2.0 Common User Interface Design Don’ts and Dos. Morgan
Kaufmann Publishers, San Francisco (2008)

12. Borchers, J.O., Thomas, J.C.: Patterns: what’s in it for HCI? In: Conference on Human
Factors in Computing Systems, pp. 225–226 (2001)

13. Seffah, A., Javahery, H.: On the Usability of Usability Patterns. In: Workshop entitled Pat-
terns in Practice, CHI (2002)

14. Nielsen, J.: Guerrilla HCI: Using Discount Usability Engineering to Penetrate the Intimi-
dation Barrier. Cost-Justifying Usability, 245-272 (1994)

15. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

16. van Welie, M., van der Veer, G.C., Eliëns, A.: Patterns as Tools for User Interface Design.
Tools for Working with Guidelines: Annual Meeting of the Special Interest Group, 313-
324 (2000)

17. Van Biljon, J., Kotzé, P., Renaud, K., McGee, M., Seffah, A.: The use of anti-patterns in
human computer interaction: wise or III-advised? In: Proceedings of the 2004 annual re-
search conference of the South African institute of computer scientists and information
technologists on IT research in developing countries, pp. 176–185 (2004)

18. Fincher, S., Finlay, J., Greene, S., Jones, L., Matchen, P., Thomas, J., Molina, P.J.: Per-
spectives on HCI patterns: concepts and tools. In: Conference on Human Factors in Com-
puting Systems, pp. 1044–1045 (2003)

19. Folmer, E., Welie, M., Bosch, J.: Bridging patterns: An approach to bridge gaps between
SE and HCI. Information and Software Technology 48, 69–89 (2006)

20. Schummer, T., Borchers, J., Thomas, J.C., Zdun, U.: Human-computer-human interaction
patterns: workshop on the human role in HCI patterns. In: Conference on Human Factors
in Computing Systems, pp. 1721–1722 (2004)

21. van Welie, M., van der Veer, G.C.: Pattern Languages in Interaction Design: Structure and
Organization. Proceedings of Interact 3, 1–5 (2003)

22. Ahmed, S., Ashraf, G.: Model-based user interface engineering with design patterns. Jour-
nal of Systems and Software 80, 1408–1422 (2007)

23. Van Welie, M.: Personal communication, Amsterdam (February 2008)
24. Moran, T.P.: Command Language Grammar: A Representation for the User Interface of

Interactive Computer Systems. INT. J. MAN-MACH. STUDIES 15, 3–50 (1981)
25. Norman, D.A.: The design of everyday things. Doubleday, New York (1990)
26. Rohr, G., Tauber, M.: Representational framework and models for human-computer inter-

faces. In: van der Veer, et al. (eds.) Readings on Cognitive Ergonomics-Mind and Com-
puter. Springer, Heidelberg (1984)

27. Fincher, S.: Perspectives on HCI patterns: concepts and tools (introducing PLML). Inter-
faces 56, 26–28 (2003)

28. Bienhaus, D.: PLMLx Doc. (2004),
 http://www.cs.kent.ac.uk/people/staff/saf/patterns/plml.html

29. Fincher, S.: PLML extensions: concerns (2004),
 http://www.cs.kent.ac.uk/people/staff/saf/patterns/concerns.html

30. Deng, J., Kemp, E., Todd, E.G.: Focusing on a standard pattern form: the development and
evaluation of MUIP. In: Proceedings of the 6th ACM SIGCHI New Zealand chapter’s in-
ternational conference on Computer-human interaction: design centered HCI, pp. 83–90
(2006)

120 E.-J. Hennipman, E.-J. Oppelaar, and G. van der Veer

31. Bass, L., John, B.E.: Linking usability to software architecture patterns through general
scenarios. The Journal of Systems & Software 66, 187–197 (2003)

32. Alexander, C.: The Timeless Way of Building. Oxford University Press, Oxford (1979)
33. Coepijn, C.: The new Van Gogh Museum Website. Vrije Universiteit, Amsterdam (2005)
34. Van Welie, M., Klaassen, B.: Evaluating museum websites using design patterns. Techni-

cal Report: IR-IMSE (2004)
35. Brooke, J.: SUS-A quick and dirty usability scale (1996)
36. Tullis, T.S., Stetson, J.N.: A comparison of questionnaires for assessing website usability

(2004)
37. Alliance, A.: Manifesto for Agile Software Development ,

 http://www.agilemanifesto.org/

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 121–135, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Cascading Dialog Modeling with UsiXML

Marco Winckler1,2, Jean Vanderdonckt2, Adrian Stanciulescu2,
and Francisco Trindade3

1 IRIT, Université Toulouse 3, France, 118 route de Narbonne,
F-31062 Toulouse cedex 9 (France),

 winckler@irit.fr, http://liihs.irit.fr/winckler/
2 Belgian Lab. of Computer-Human Interaction, Louvain School of Management,

Université catholique de Louvain, Place des Doyens,
1 – B-1348 Louvain-la-Neuve (Belgium)

 jean.vanderdonckt@uclouvain.be, http://www.isys.ucl.ac.be/bchi
3 Federal University of Rio Grande do Sul (UFRGS), Caixa Postal 15064,

91501970 Porto Alegre (Brazil)
fmtrindade@inf.ufrgs.br

Abstract. This paper discusses multi-level dialog specifications for user inter-
faces of multi-target interactive systems and it proposes a step-wise method that
combines a transformational approach for model-to-model derivation and an in-
teractive editing of dialog models for tailoring the derived models. This method
provides a synthesis of existing solutions for dialog modeling using a XML-
based User Interface Description Language, UsiXML, along with State-
WebCharts notation for expressing the dialog at a high level of abstraction. Our
aim is to push forward the design and reuse of dialog specifications throughout
several levels of abstraction ranging from task and domain models until the fi-
nal user interface thanks to a mechanism based on cascading style sheets. In this
way, it is expected that the dialog properties are not only inherited from one
level to another but also are made much more reusable than in the past.

Keywords: cascading style sheet, dialog modeling, multi-target user interfaces,
StateWebCharts, user interface description language, UsiXML.

1 Introduction

The large variety of computing systems available nowadays (e.g., low-weight desk-
top/notebook computers, cell phone, Personal Digital Assistant - PDA, Smartphone)
have created a milestone for cost-effective development and fast delivery of multi-
target interactive systems [21]. Multi-target user interfaces should be adapted to de-
vice’s constraints such as screen resolution and preferred interaction techniques (e.g.
text, graphical, voice-based, gesture) which requires the inclusion of the notion of
plasticity in the development process [3]. Quite often, it is required the development
multiples versions of the same applications. The availability of many computing de-
vices creates problems for ensuring cross-consistent execution of the software along
different platforms and it will ultimately increase the costs and time required for soft-
ware construction and maintenance.

122 M. Winckler et al.

In the last years User Interface Description Languages (UIDL) appeared as a suit-
able solution for developing multi-target user interfaces. By applying appropriate
model transformations, specifications of User Interfaces (UI) created with UIDLs can
be reused and adapted according to constraints imposed by input/output devices, dif-
ferent contexts of use, or specific user preference. For example, UIDLs such as UIML
[1], XIML [15], XUL [20], UMLi [7], among many others, have been successfully
used for this purpose. In this scenario, the Cameleon reference framework [5] intro-
duced a fresh perspective for the development of User Interface Description Lan-
guages (UIDL) by proposing 4 abstraction levels for the specification of user interface
(i.e., task models, abstract UI, concrete UI and final UI). Such as multi-layer specifi-
cation aims at giving more flexibility for specifying variations of the UI design, which
is often required to generate the best solution according different contexts of the use.
By successive transformations of abstract models, the specification of the UIs is com-
pleted and refined to more concrete specifications until it features executable device-
platform-modality dependent specifications.

We assume that an UIDL must cover three different aspects of the UI: the static
structure of the user interfaces (i.e. including the description of user interface ele-
ments - e.g., widgets - and their composition), the dynamic behavior (i.e., the dialog
part, describing the dynamic relationships between components including event, ac-
tions, and behavioral constraints) and the presentation attributes (i.e., look & feel
properties of UI elements). However, this is not always the case as many UIDLs do
not provide full modeling support for all theses aspects. In particular, dialog model is
one of the most difficult to exploit and it is often misunderstood [11].

Dialog models play a major role on UI design by capturing the dynamic aspects of
the user interaction with the system which includes the specification of: relationship
between presentation units (e.g., transitions between windows) as well as between UI
elements (e.g., activate/deactivate buttons), events chain (i.e., including fusion/fission
of events when multimodal interaction is involved) and integration with the functional
core which requires mapping of events to actions according to predefined constraints
enabling/disabling actions at runtime.

In this paper, we analyze the specification of the dialog part when using a
multi-layer description language. In particular, it presents a method that combines
transformational approaches and interactive (i.e., manual) edition of dialog models.
The remainder of this paper is structured as follows: Section 2 defines the concepts
that are useful for understand our approach which is presented in Section 3, and illus-
trate how they have been implemented in a case study (here, a car rental system) in
Section 4. Section 5 discusses the related work. Section 6 summarizes the benefits and
discusses some future avenues to this work.

2 Basic Concepts

This section describes the basic concepts about modeling the dialog aspect of multi-
target applications.

 Cascading Dialog Modeling with UsiXML 123

2.1 The Architecture of Dialog Arch

The basic assumption on dialog modeling is that it must describe the behavior of input
and output devices, the general dialogue between the user and the application and the
logical interaction provided by the interaction technique. These requirements for dia-
log modeling can be decomposed in layers as proposed by architecture Arch [2]
which describes the various architectural components of an interactive application and
the relationships between them as show in Fig. 1. For the purpose of this paper, the
left hand side of the Arch (which concerns the functional core of the application) is
not relevant. The steps that are considered in a complete dialog between the user and
the system, from the physical input to the physical output (presentation rendering) are
the following:

1) Low-level events (physical events) are generated by the physical devices and
received by the Physical Interaction component;

2) Low-level events are transformed into logical events that independent of the
employed input device;

3) Logical events are treated by the dialog controller which coordinate the se-
quence of events and the connection the functional core of the application;

4) Changes in the system state generates abstract rendering events;
5) Rendering events are reified into more concrete events offering a concrete

rendering of the physical output.

Fig. 1. The architecture Arch

According to the Arch architecture above the dialog model (step 3) can be isolated
from technical details concerning the physical input events and rendering output. So
that, changing the input/output devices (e.g., mouse x touch screen) would not affect
the specification of the dialog itself (this is true when considering the same interaction
technique, ex. pointing). Conversely, different dialog models would be applied to dif-
ferent contexts of the use (ex. guided interaction through sequential screens or all-at-
one interaction on a single screen) without a major impact on the input and/or output
devices. Moreover, the same dialog model would be suited to different modalities
with similar results. The dynamic adaptation of the dialog should be flexible enough
in order to support any modification of the presentation, however the method allowing
the adaptation are out of the scope of this paper.

124 M. Winckler et al.

2.2 Levels of Abstraction of User Interfaces

The Cameleon Reference Framework [5] proposes to describe user interfaces accord-
ing four levels of abstractions: task models, abstract user interfaces (AUI), concrete
user interface (CUI) and final user interface (FUI). By appropriate tool support it is
possible to refine abstract user interface elements into more concrete specifications.
According to the step considered, user interface specifications include more or less
details about the user interface behavior, which lead designers to treat different dialog
components (ex. state, condition, transitions, actions, etc) as exemplified in Table 1.

Table 1. Abstraction levels on dialog modeling

UI Abstraction level Concepts Dialog Components

Task Model (TM) Interactive tasks carried out by
the end user & domain objects

Tasks and dependencies between tasks

Abstract User Inter-
face (AUI)

UI definition independent of any
modality of interaction

Relationship between logical presentation units (e.g. transition
between windows), logical events, abstract actions

Concrete User Inter-
face (CUI)

Concretizes AUI into CIOs
(widget sets found in popular
graphical and vocal toolkits)

States, (concrete) events, parameters, actions, controls,
changes on UI dialog according to events, generic method
calls, etc

Final User Interface
(FUI)

operational UI that runs on a
particular platform either by in-
terpretation or by execution

“Physical” signature of events, platform specific method calls,
etc

2.3 Specifying User Interface Dialogs

There are a large number of notations and techniques for describing the dialog aspect
of the user interface. A review on the advances of dialog notations can be found in
[11]. Hereafter we focus on some few, but representative, UIDLs which are presented
in Table 2. Some notations are devoted to the dialog aspect of the user interface (for
example, ICO [3], SCXML [18] and SWC [21]), while other UIDLs might also cover
the structure and the presentation aspects. Is some cases the description of the dialog
is supported by an external language (e.g., XUL), however, quite often, the dialog is
embedded into the UIDL, such as is the case of UsiXML, XUL and UIML.

Currently only UsiXML [10] and TERESA XML [12] have 4 levels of abstraction
as proposed by the Cameleon Reference Framework. XUL and UIML’s dialog speci-
fication are oriented to implementation, which corresponds to the level CUI and FUI
in the framework Cameleon.

As UIDLs must capture the intended dialog behavior, the specification of complex
relationship between widgets quite often requires some kind of formal description
technique such as Lotus, Petri Nets or Statecharts. However, this not avoids having
some UIDLs implementing specific notations. It is noteworthy that UIDLs based on
Petri Nets (such as ICO [3]) or based on StateCharts (SCXML[18] and SWC [21])
should also be considered as generic languages which can be employed at different
levels of abstract of the user interface design.

UIDLs might include many mechanisms for specifying dynamic behavior such as
the UI changes (corresponding to the local dialog changing properties of individual
user interface components, ex. widgets), method calls (facilitating the integrating with
the application’s functional core), events, explicitly representation of current system

 Cascading Dialog Modeling with UsiXML 125

Table 2. Support for Dialog Modeling of some User Interface Description Languages
L

an
gu

ag
e

Aspects de-
scribed

Specification
Levels of
abstrac-

tion

Formalism/
Notation lan-

guage

Dynamic behavior
described

Data ex-
change

Control
(conditions)

U
SI

X
M

L

Presentation,
Dialog, Struc-

ture
Embedded

Task Mod-
el, AUI,

CUI, FUI

Specific nota-
tion for every

abstraction level

transition, method
call, ui change

parame-
ters

Yes

X
U

L
 Presentation,

Dialog, Struc-
ture

XBL Xul
binding lan-

guage
CUI, FUI

Specific nota-
tion

transition, method
calls

parame-
ters

Yes

IC
O

Dialog Embedded Generic Petri Net
ui changes method

call, event, transition
reference Yes

SC
X

M
L

Dialog Embedded Generic Statecharts
event, method call,

transition, state
parameter,
reference

Yes

T
E

R
E

SA
-X

M
L

Presentation,
Dialog, Struc-

ture
Embedded

Task mod-
el, AUI,

CUI, FUI
Lotus

event, ui changes,
transition

Parame-
ters

Yes

U
IM

L
 Presentation,

Dialog, Struc-
ture

Embedded CUI, FUI
Specific nota-

tion
ui changes method

call, event, transition

parame-
ters, refer-

ence
Yes

SW
C

Dialog Embedded Generic Statecharts
ui changes method
call, event, transi-

tion, state

Parame-
ters

Yes

state and explicitly representation of transitions changing the state of the system.
Date exchange can be done via passage of parameters along transitions, by reference
to objects or both. All notations surveyed consider some kind of control for specifying
constraints (i.e. conditions) during the execution of the dialog.

3 A Method for Dealing with Multi-level Dialog Specification

The proposed method is based on the following shortcomings:

• Autonomy of the dialog with respect to the structure and the presentation of the
UI which implies that for any UI model describing the user interface components
must have at least one dialog model supporting each design options. The separa-
tion of the dialog might lead to the reusability of some specifications and improve
readability.

• Use of formal description technique for reducing the ambiguity of specification;
This requirement is also important for implementing tool support;

• Use of some graphical representation for the dialog. This is an important re-
quirement for improving the readability of specifications;

• Combined use of automated and manual transformations of abstract UI specifica-
tion into more concrete UI. Automated transformations might improve productiv-
ity but designer should be able to modify the dialog afterwards;

126 M. Winckler et al.

• No imposed start point for dialog specifications. It is advisable to start by task
models. However, some designers would prefer to start with more concrete dia-
log models and then refine them until the implementation; conversely, abstrac-
tions can be defined after deep analysis of existing concrete models.

3.1 Notations

The method proposed relies on UIDLs able to cover different level of abstraction and
independence of dialog towards the user interface. For the purpose of this paper we
employ two notations: UsiXML [10] to describe the structure and the presentation as-
pects of the user interface, and SWC [21] to describe the dialog.

UsiXML (USer Interface eXtensible Markup Language) is defined in a set of XML
schemas. Each schema corresponds to one of the models in the scope of the language.
UsiXML consists of a User Interface Description Language (UIDL) that is a declara-
tive language capturing the essence of what a UI is or should be independently of
physical characteristics. It describes at a high level of abstraction the constituting
elements of the UI of an application: widgets, controls, containers, modalities, interac-
tion techniques, etc. Several tools exist for editing specification using UsiXML at dif-
ferent level of abstraction. The interest on UsiXML is the fact that it supports all fours
levels of abstraction considered in this paper. Despite of that, UsiXML do not impose
any particular development process so that designers are free to choose the abstract
level the most appropriate to start their projects.

StateWebCharts notation (SWC) was originally proposed to specify dynamic be-
havior of Web applications. SWC is a formal description technique based on Harel’s
StateCharts. States in SWC are represented according to their function in the model-
ing: they can be static, dynamic, transient or external. Additionally, SWC transitions
explicitly represent the agent activating it (e.g. user actions are graphically drawn as
continuous arrows while transitions triggered by system or completion events are
drawn as dashed arrows). The interest on SWC for this paper remains on the full sup-
port to describe events and the notion of containers associate to states which can be
easily mapped to UsiXML containers. Further information about these notations and
the proper mapping between then is given along the case study on section 4.

3.2 Step-Wise Method

The method presented in this section proposes the combined use of transformational
approaches and interactive (i.e. manual) edition of dialog models. The name “cas-
cade” is a reference for the fact that, similar to other user interface models, dialog
models can be derive from abstract to more concrete specification. The general reifi-
cation schema is presented by Fig. 2.

The reification schema presented is composed of the following steps: 1) a task
model is produced; 2) an Abstract Dialog Model can be generated automatically from
task models using transformation rules. In this case, the dialog at this level is limited
to the relationship that can be inferred from task models. Designers must create dialog
specifications using external tools. Abstract UI can also be created manually in the
absence of task models. Appropriate mapping is required to connect the Abstract UI
and the Abstract Dialog. 3) A Concrete Dialog Model will be generated from the

 Cascading Dialog Modeling with UsiXML 127

Abstract Dialog Model based on transformation rules. More Concrete Dialog Compo-
nents will be added manually according to design choices. 4) The Final UI Dialog
Control is generated from Concrete Dialog Control to copy with the target platform.

Task Model

Abstract UI Abstract dialog

Transformational approach

Dialog modeling

Step

 mapping

Transformational approach

Concrete UI

Concrete dialog

 mapping

Transformational approach

Step

Final UI

Dialog modeling

Concrete dialog (revised)

Step

Step

Fig. 2. Dialog reification schema

Table 3. Mapping scheme between UsiXML and SWC constructs

Abstraction
level of UI

UsiXML Construct SWC Constructs Description of Constructs

Task Model

(TM)

Task
Relationships (e.g. enabling)

-

-

User tasks

Relationships between tasks

Abstract
User Inter-
face

(AUI)

abstractContainer
abstractIndividualComponent

control

compound states
basic states
transitions

High level containers for UI components
UI containers (ex. presentation units)

Relationships between containers

Concrete
User Inter-
face (CUI)

window
behavior

event
action

methodCall / transition / uichange
-

parameters
-
-
-
-
-

basic state

transition

event

action

action type

condition

parameters

user transitions

system transitions

transient states

history states

end states

UI components featuring containers

Definition of relationships between containers

Events raising

Behavior associated to events

Action executed when event is triggered

Pre-condition associated to actions

Data exchange format

User initiated actions

System initiated actions (ex. timed transitions)

Non-deterministic behavior of functional core

Memory for recent states

Notification of end of system execution

128 M. Winckler et al.

Designers could start working the dialog at any step of the abstraction levels pre-
sented by Fig. 2 by reusing specifications produced via a transformational approach or
creating specification for both UI components and dialog at each level. The mapping
of between the dialog specification with SWC and others components of the user in-
terface in UsiXML is ensured by mapping tables as presented in Table 3.

4 Case Study

The case study concerns a simple car rental system allowing users to choose a car,
book and pay a reservation and print a receipt. The detailed case study can be found in
[16] (pp. 140-164). The next sections present the car rental system featuring 3 levels
of abstraction (task model, AUI and CUI); the level FUI is similar to the CUI (refin-
ing dialog primitives to target platforms) so, it will not be described hereafter.

4.1 Task Model

The task model considered for the car rental application is presented in Fig. 3.a. The
sequence for execution of sub-tasks could follow different orders thus originating dif-
ferent scenarios. We limit our discussion to a single scenario presented in Fig. 3.b.

a) Task description b) Scenario for task model

Fig. 3. Specification of task models: a) task model using IdealXML; b) a scenario

In Fig. 4 we present the task model according to the UsiXML syntax as it is gener-
ated by the tool IdealXML. One might notice that all relationships and dependencies
among tasks are preserved at this level (see lines 14 and 26 for enabling tasks and 18
and 22 for undetermined choices) so that many scenarios can be extracted.

4.2 Abstract User Interface (AUI)

Once we have defined the task models, it is possible to generate the abstract model for
the user interface. Fig. 5 presents the corresponding abstract user interface (only ab-
stract containers - e.g. abstract windows – are shown) for the task model. The abstract
model provides definitions for user interfaces that are independent of any modality of
interaction. By using appropriate transformation rules, it possible to generate abstract
containers from task definitions as presented in Fig. 6. Abstract containers correspond
to the static part of the user interface.

 Cascading Dialog Modeling with UsiXML 129

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!--Tasks-->

3. <taskmodel>
4. <task id="st0task0" name="RentCar" type="abstraction">
5. <task id="st0task2" name="DefinePreferences" type="interaction">
6. <task id="st0task3" name="DefineRentalPreferences" type="interaction"/>
7. <task id="st0task4" name="DetermineCar" type="interaction"/>
8. <task id="st0task5" name="DefinePayment" type="interaction"/>
9. </task>
10. <task id="st0task6" name="ProcessPayment" type="application"/>
11. <task id="st0task7" name="ConfirmRentalInformations" type="application"/>
12. </task>
13. <!--Tasks relationships-->
14. <enabling>
15. <source sourceId="st0task2"/>
16. <target targetId="st0task6"/>
17. </enabling>
18. <undeterministicChoice>
19. <source sourceId="st0task3"/>
20. <target targetId="st0task4"/>
21. </undeterministicChoice>
22. <undeterministicChoice>
23. <source sourceId="st0task4"/>
24. <target targetId="st0task5"/>
25. </undeterministicChoice>
26. <enabling>
27. <source sourceId="st0task6"/>
28. <target targetId="st0task7"/>
29. </enabling>
30. </taskmodel>

Fig. 4. UsiXML specification of task models for a car rental system

Fig. 5. Abstract User Interface as depicted by IdealXML

1. <?xml version="1.0" encoding="UTF-8"?>
2. <auimodel>

3. <abstractContainer id="idaio00" name="RentCar">
4. <abstractContainer id="idaio01" name="DefinePreferences">
5. <abstractIndividualComponent id="idaio02" name="DefineRentalPreferences">
6. <abstractIndividualComponent id="idaio03" name="idaio03">
7. <control id="idaio04" name="idaio04" actionType="interaction" ac-

tion="dialog.defineRentalPreferences" />
8. </abstractIndividualComponent>
9. </abstractIndividualComponent>
10. <abstractIndividualComponent id="idaio05" name="DetermineCar">
11. <abstractIndividualComponent id="idaio06" name=" idaio06">
12. <control id="idaio07" name="idaio07" actionType="interaction" action="dialog.determineCar" />
13. </abstractIndividualComponent>
14. </abstractIndividualComponent>
15. <abstractIndividualComponent id="idaio08" name="DefinePayment">
16. <abstractIndividualComponent id="idaio09" name="idaio09">
17. <control id="idaio10" name="idaio10" actionType="interaction" action="dialog.definePayment" />
18. </abstractIndividualComponent>
19. </abstractIndividualComponent>
20. </abstractContainer>

21. <abstractIndividualComponent id="idaio11" name="ProcessPayment">
22. <abstractIndividualComponent id="idaio12" name="idaio12">
23. <control id="idaio13" name="idaio13" actionType="application" ac-

tion="dialog.processPayment" />
24. </abstractIndividualComponent>
25. </abstractIndividualComponent>
26. <abstractIndividualComponent id="idaio14" name="ConfirmRentalInformations">
27. <abstractIndividualComponent id="idaio15" name="idaio15">
28. <control id="idaio16" name="idaio16" actionType="application" action="dialog.confirmRentalInformations" />
29. </abstractIndividualComponent>
30. </abstractIndividualComponent>
31. </abstractContainer>
32. </auimodel>

Fig. 6. UsiXML specification of abstract models for a car rental system

130 M. Winckler et al.

At this step one must identify two common dynamic behaviors: transitions between
different presentation units, the so called interaction (Fig. 6, line 7); or the so called
application which will be refined to method calls in the concrete user interface (Fig.
6, line 23). The so called interaction behavior corresponds to local dialog control; its
implementation is very simple as it just proceeds to the next presentation unit. The so
called Interaction behavior has a strong impact on the dialog of the application as
their execution might affect the sequencing of the next task. For example, the execu-
tion of the task ProcessPayment might return at least two possible states for the sys-
tems: successful payment or payment fail. Such as dynamic behavior is described in
the dialog model presented by Fig. 7. In Fig. 7, continuous lines on transitions (i.e. t4
and t5) correspond to interactive tasks which can be automatically refined by succes-
sive transformation of task models whilst dashed lines (i.e. t6) correspond to a behav-
ior that should be defined manually by the designer.

Fig. 7. Abstract Dialog modeling with SWC for a car rental system

It is noteworthy that the dialog at this step is also independent of the platform. Fur-
ther refinement is required in order to complete the integration with the functional
core of the application. The mapping between states and transitions of SWC to
UsiXML components is made manually by choosing from the UsiXML specification
the components that fits the best to the purpose of the dialog. In the example pre-
sented at Fig. 7, the state DefinePreferences is mapped to the abstractContainer
named DefinePreferences (see line 4 of Fig. 6).

4.3 Concrete User Interface (CUI)

At this step some modality constraints can be added into the design. There are many
possible scenarios for developing dialog models according to the modality chosen.
Due to space reasons we limited a single scenario but that could have 2 possible dia-
log models. The first case considers a dialog model for interactions on a single pres-
entation unit. For the second case, user interaction is supported along three different
presentation units. The first scenario (i.e. a single presentation unit) would be suitable
for large displays where users can freely choose the order of filling in the forms whilst
the second scenario (i.e. several presentation units) is suitable for small displays (e.g.
PDA) or to context of use where users need to be more guided during interaction (e.g.
vocal interaction on cell phones).

 Cascading Dialog Modeling with UsiXML 131

a) Single presentation b) multiple presentation units

Fig. 8. Concrete User Interface Specification using SketchiXML

Fig. 9 presents the corresponding CUI specification in UsiXML for the single pres-
entation unit depicted in Fig. 8.a.

1. <?xml version="1.0" encoding="UTF-8"?>
2. <uiModel id="Car_Rental" … >
3. <head>
4. <version modifDate="2007-12-19T15:45:21.031-02:00"/>
5. <authorName>SketchiXML</authorName>
6. </head>
7. <cuiModel id="Car_Rental-cui" name="Car_Rental-cui">

8. <window id="window_0" name="window_0" … >
…
9. <comboBox id="ComboBox_0" name="ComboBox_0"…>
10. <behavior>
11. <event id="evt_0" eventType="change" eventContext="Button_0"/>
12. <action id="act_0" name="act_0">
13. <methodCall methodName="dialog.carTypeChange">
14. <action>
15. </behavior>
16. </comboBox>
…
17. <button id="Button_1" name="Button_1">
18. <behavior>
19. <event id="evt_1" eventType="click" eventContext="Button_1"/>
20. <action id="act_1" name="act_1">
21. <methodCall methodName="dialog.defineRentalPreferences">
22. <methodCall methodName="dialog.determineCar">
23. <methodCall methodName="dialog.definePayment">
24. <action>
25. </behavior>
26. </button>
…
27. </window>
28. </cuiModel>

Fig. 9. UsiXML Concrete User Interface Specification for a single presentation unit

In Fig. 10 we propose four design options for the concrete dialog. The option a)
(single presentation unit) corresponds to the dialog modeling for the single presenta-
tion depicted in Fig. 8.a. The mappings for connecting the SWC specification with the
other components of the UsiXML description are in bold face. The operational execu-
tion of the model Fig. 10.a is the following: once the state DefinePreferences is
reached, all user interface components in the mapping are shown in a single presenta-
tion unit. The transitions in SWC are implemented according to events, actions and
method calls mapped from UsiXML controls (ex. Fig. 9, line 11, 12 and 13).

132 M. Winckler et al.

a) single presentation unit b) any order, multiple presentation units

c) guided forth and backward interaction d) guided straight interaction

Fig. 10. Design option for dialog at the level Concrete Specification of the User Interface

Fig. 10.b, c and d, propose alternative interaction behavior for the multiple presen-
tation units depicted in Fig. 8.b. In all these examples, the mapping to concrete com-
ponents also include the sub set of containers named definePreferences, determine-
Car,and definePayment, which were previously identified at the step AUI (see sec-
tion 4.2). The most important differences concerns how the states are connected to
each other. It noteworthy that these design options only affect the specification of the
dialog and the UsiXML remain the same. As a consequence, a dialog model does not
imply a specific modality as any of the design options are suitable for rendering the
user interface via different channels.

5 Related Work

Several works have been done on the design and specification of the dialog aspect of
the user interfaces. Considering the organization of complex dialog structures, one
should mention the hierarchical events proposed by Kosbie [9] which demonstrates
how high level events can be identified and reified to low-level events triggered by
user interface devices. Important improvements have also been done towards formal
description techniques for the specification of complex dialog behavior. In this re-
spect, it is noteworthy the ICO formalism [3], based on Petri Nets, allows more ex-
pressive and modular dialog specifications than the earlier attempts on formal meth-
ods for describing fusion/fission of complex events as they occurs in multimodal in-
teraction techniques [13]. The organization of dialog models toward independent,
modular and self-contained dialog structures have been a main target for developing
complex interactive systems [8]. These previous work have mainly address the case of
the organization of the dialog according to a single implementation.

 Cascading Dialog Modeling with UsiXML 133

As far as multi-target user interfaces is a concerns, only a few work have consid-
ered multi-level dialog specification. Book and Gruhn [4] have proposed the use of
external dialogs for treating different presentation channels for multimodal Web ap-
plications. Their approach is based on a formal description technique called Dialog
Flow Notation (DFN) that provides constructs for the design of modular navigation
models for multimodal Web applications. Mori, Paterno and Santoro [12] have pro-
posed a design method and tool called TERESA for dealing with the progressive
transformation of abstract description of the user interface to final implementations
whilst try to preserve the usability and plasticity of the user interface. Similarly, Luy-
ten et al. [11] have proposed a transformational approach for derive final user inter-
face dialog from task models. These solutions are based on top-down approach of de-
velopment with little flexibility for implementing design options.

6 Conclusion and Future Work

This paper discussed several issues related to multi-level dialog specifications for
multi-target user interface User Interface Description Languages. Additionally it pro-
poses a design method combining two currently available UIDLs: UsiXML and SWC.
This work tried to demonstrate that transformational approaches and manual dialog
specification can be combined to promote the reification of abstract user interface into
more concrete user interfaces. The approach presented is duly based on the clear sepa-
ration of the dialog aspect of the other components of the user interface. Such as sepa-
ration presents several advantages such as it improves the readability of models, it
supports reuse of specifications and it might help the management of versions accord-
ing different design choices. This method is clearly based on open standards like
UsiXML which make possible to assemble UI elements built with different tools (for
instance, IdealXML, SketchiXML, GrafiXML, see www.usixml.org) and couple them
with external dialog specifications (for example, SWC). The advantage of such as an
approach is that one can reuse knowledge and tools for dealing with dialog models
and study the limits of dialog specification at different levels of abstraction. Dialog
models created with SWC can be simulated by the SWCEditor [23] so that, the behav-
ior of the application can be inspected at any time.

The current work is limited to dialog specified produced with the SWC notation.
However, we suggest that it could be generalized for other dialog description tech-
niques with similar expressive power. Another limitation is the fact no complex mul-
timodal interaction techniques requiring fission/fusion of events, for example, has
been taken into account. Such as situation will be investigated in future work.

References

1. Ali, M.F., Pérez-Quiñones, M.A., Abrams, M.: Building Multi-Platform User Interfaces
with UIML. In: Seffah, A., Javahery, H. (eds.) Multiple User Interfaces: Engineering and
Application Framework. John Wiley and Sons, New York (2003)

2. Bass, L., Pellegrino, R., Reed, S., Seacord, R., Sheppard, R., Szezur, M.R.: The Arch
model: Seeheim revisited. In: User Interface Developer’s workshop version 1.0 (1991)

134 M. Winckler et al.

3. Bastide, R., Palanque, P.: A Visual and Formal Glue Between Application and Interaction.
Journal of Visual Language and Computing 10(5), 481–507 (1999)

4. Book, M., Gruhn, V.: Efficient Modeling of Hierarchical Dialog Flows for Multi-Channel
Web Applications. In: Proc. of 30th Annual Int. Computer Software and Applications
Conference COMPSAC 2006, Chicago, September 17-21, 2006, pp. 161–168. IEEE Com-
puter Society, Los Alamitos (2006)

5. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting With Com-
puters 15(3), 289–308 (2003)

6. Collignon, B., Vanderdonckt, J., Calvary, G.: An Intelligent Editor for Multi-Presentation
User Interfaces. In: Proc. of 23rd Annual ACM Symposium on Applied Computing SAC
2008, March 16-20, 2008, pp. 1634–1641. ACM Press, New York (2008)

7. da Silva, P.P., Paton, N.W.: User Interface Modeling in UMLi. IEEE Software 20(4), 62–
69 (2003)

8. Conversy, S., Eric, B., Navarre, D., Philippe, P.: Improving modularity of interactive soft-
ware with the MDPC architecture. In: Proc. of Engineering Interactive Systems 2007 (IFIP
WG2.7/13.4 10th Conference on Engineering Human Computer Interaction jointly organ-
ized with IFIP WG 13.2 1st Conference on Human Centred Software Engineering and
DSVIS - 14th Conference on Design Specification and Verification of Interactive Sys-
tems) EIS 2007, Salamanca, March 22-24, 2007. Springer, Heidelberg (2007)

9. Kosbie, D.S.: Hierarchical events in graphical user interfaces. In: Proc. of ACM Conf. on
Human factors in computing systems CHI 1994, Boston, April 1994, pp. 131–132. ACM
Press, New York (2004)

10. Limbourg, Q., Vanderdonckt, J.: UsiXML: A User Interface Description Language Sup-
porting Multiple Levels of Independence. In: Matera, M., Comai, S. (eds.) Engineering
Advanced Web Applications, pp. 325–338. Rinton Press, Paramus (2004)

11. Luyten, K., Clerckx, T., Coninx, K., Vanderdonckt, J.: Derivation of a Dialog Model from
a Task Model by Activity Chain Extraction. In: Jorge, J.A., Jardim Nunes, N., Falcão e
Cunha, J. (eds.) DSV-IS 2003. LNCS, vol. 2844, pp. 203–217. Springer, Heidelberg
(2003)

12. Mori, G., Paternò, F., Santoro, C.: Design and Development of Multidevice User Inter-
faces through Multiple Logical Descriptions. IEEE Transactions on Software Engineer-
ing 30(8), 507–520 (2004)

13. Navarre, D., Palanque, P., Bastide, R., Schyn, A., Winckler, M., Nedel, L., Freitas,
C.M.D.S.: A Formal Description of Multimodal Interaction Techniques for Immersive
Virtual Reality Applications. In: Costabile, M.F., Paternó, F. (eds.) INTERACT 2005.
LNCS, vol. 3585, pp. 170–183. Springer, Heidelberg (2005)

14. Palanque, P., Bastide, R., Winckler, M.: Automatic Generation of Interactive Systems:
Why A Task Model is not Enough. In: Proc. of 10th Int. Conf. on Human-Computer Inter-
action HCI International 2003, Heraklion, June 22-27, 2003, pp. 198–202. Lawrence Erl-
baum Associates, Mahwah (2003)

15. Puerta, A., Eisenstein, J.: XIML: A Common Representation for Interaction Data. In: Proc.
of 6th ACM Int. Conf. on Intelligent User Interfaces Conference IUI 2002, San Francisco,
January 13-16, 2002, pp. 216–217. ACM Press, New York (2002)

16. Stanciulescu, A., Vanderdonckt, J.: Design Options for Multimodal Web Applications. In:
Proc. of 6th Int. Conf. on Computer-Aided Design of User Interfaces CADUI 2006, Bu-
charest, June 6-8, 2006, pp. 41–56. Springer, Heidelberg (2006)

 Cascading Dialog Modeling with UsiXML 135

17. Stanciulescu, A., Limbourg, Q., Vanderdonckt, J., Michotte, B., Montero, F.: A Transfor-
mational Approach for Multimodal Web User Interfaces based on UsiXML. In: Proc. of
7th ACM Int. Conf. on Multimodal Interfaces ICMI 2005, Trento, October 4-6, 2005, pp.
259–266. ACM Press, New York (2005)

18. State Chart XML (SCXML): State Machine Notation for Control Abstraction. W3C Work-
ing Draft, February 21 (2007), http://www.w3.org/TR/scxml/

19. Trindade, F.M., Pimenta, M.S.: RenderXML – A Multi-platform Software Development
Tool. In: Winckler, M., Johnson, H., Palanque, P. (eds.) TAMODIA 2007. LNCS,
vol. 4849, pp. 292–297. Springer, Heidelberg (2007)

20. XML User Interface Language (XUL), Mozilla Foundation (January 2008),
 http://www.mozilla.org/projects/xul/

21. Weiser, M.: The world is not a desktop. Interactions 1(1), 7–8 (1994)
22. Winckler, M., Palanque, P.: StateWebCharts: a Formal Description Technique Dedicated

to Navigation Modelling of Web Applications. In: Jorge, J.A., Jardim Nunes, N., Falcão e
Cunha, J. (eds.) DSV-IS 2003. LNCS, vol. 2844, pp. 61–76. Springer, Heidelberg (2003)

23. Winckler, M., Barboni, E., Farenc, C., Palanque, P.: SWCEditor: a Model-Based Tool for
Interactive Modelling of Web Navigation. In: Proc. of 4th Int. Conf. on Computer-Aided
Design of User Interfaces CADUI 2004, Funchal, January 14-16, 2004, pp. 55–66. Klu-
wer, Dordrecht (2005)

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 136–148, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Designing Graphical Elements for Cognitively
Demanding Activities: An Account on Fine-Tuning for

Colors

Gilles Tabart1,3, Stéphane Conversy1,3, Jean-Luc Vinot2,
 and Sylvie Athènes4

1 LII ENAC, 7, avenue Edouard Belin, BP 54005, 31055 Toulouse, Cedex 4, France
2 DSNA, DTI R&D 7, avenue Edouard Belin, BP 54005, 31055 Toulouse, Cedex 4, France

3 IHCS IRIT, 118, route de Narbonne, 31062 Toulouse Cedex 9, France
4EURISCO International, 23, avenue E. Belin, BP 44013 31028 Toulouse Cedex, France
tabart@cena.fr, stephane.conversy@enac.fr, vinot@cena.fr,

sylvie.athenes@eurisco.org

Abstract. Interactive systems evolve: during their lifetime, new functions are
added, and hardware or software parts are changed, which can impact graphical
rendering. Tools and methods to design, justify, and validate user interfaces at
the level of graphical rendering are still lacking. This not only hinders the de-
sign process, but can also lead to misinterpretation from users. This article is an
account of our work as designers of colors for graphical elements. Though a
number of tools support such design activities, we found that they were not
suited for designing the subtle but important details of an interface used in cog-
nitively demanding activities. We report the problems we encountered and
solved during three design tasks. We then infer implications for designing tools
and methods suitable to such graphical design activities.

Keywords: User interface, graphical rendering, graphical design, color design,
design study, critical systems.

1 Introduction

Visualizations of rich graphical interactive systems are composed of a great amount
of graphical elements. Perception of graphical elements is highly dependent on multi-
ple interactions between visual dimensions such as color, area, shape etc. and display
context such as type of screens and surrounding luminosity. Understanding these
interactions involves multidisciplinary knowledge: psychophysics, human computer
interaction, and graphical design. How can visualization designers make sure that they
minimize the risk of confusion? How can they be sure that any modification done on a
20 years old system will not hinder the perception, and hence the activity, of the us-
ers? How to convince users and stakeholders? In general, how can they design, vali-
date, check, assess, and justify their design?

This kind of questions has been addressed at the level of the design process for the
functional core, with methods such as Rational Unified Process or with Design Rationale

 Designing Graphical Elements for Cognitively Demanding Activities 137

tools [9], or at the level of code, using tools based on formal description of interaction,
such as Petri Nets [1]. However, tools and methods to design, justify, and validate user
interfaces at the level of graphical rendering are still lacking. A number of past studies
addressed this problem, but their results did not quite apply to the specific kind of user
interfaces we design: those that contain multiple, overlapping elements, the perception of
which are very dependent on subtle details, and that users scrutinize during long periods
of time in a demanding cognitive context. Good examples are the latest generation of
jetliners, in which pilots interact with graphical elements on liquid crystal displays (LCD)
to manage the flight, or air traffic controllers who rely mostly on radar views with multi-
ple graphical elements, to space aircraft within safety distance. As these interactive sys-
tems are used in critical situation, the need for sensible, justified, and verified design is
even more important.

In order to design such tools and methods, one must identify the relevant dimen-
sions of the activity that they are supposed to support. This paper is a report of
graphical design activities for interactive systems. We present our experience as de-
signers during various design activities we conducted. We then discuss important
considerations one has to take into account during such activities, or if one wants to
design tools and methods to support it.

2 Related Work

Graphical design issues have been studied by organizations like W3C [16], FAA [7]
and NASA [13]. They have established a batch of guidelines about UI graphical de-
sign and recommendations about common visual perception issues. Researchers in
information visualization worked on efficient representations [5,17]. Graphical semi-
ology introduced visual variables (size, value, color, granularity, orientation and
shape) together with their ability to present nominative, ordered or quantitative data
[2]. Brewer [3] proposed tools to help design harmonized color palettes for cartogra-
phy visualizations. Lyons and Moretti analyzed current color design tools [11], and
designed a tool for creating structured, harmonious color palettes [10]. We exten-
sively used guidelines from NASA and Lyons & Moretti molecules approach. They
help guide the design process, and help structure the colors used. However, NASA
guidelines are short on precise guidelines with subtle but important rendering prob-
lems. In addition, the molecules tool does not provide much help for the kind of con-
straints and needs we had during the process.

3 Studies and Experience Feedback

In this section, we present three design tasks that we conducted. We redesigned inter-
active systems that support air traffic controllers. In order to understand the design
process, we first set the context by briefly presenting air traffic control (ATC) and the
three tasks we had to accomplish as designers. We then report on our experience.

3.1 Air Traffic Control Activity

All our tasks dealt with graphical design issues pertaining to the main French radar
screen software used by the air traffic controllers. The software main goal is to display

138 G. Tabart et al.

three-dimensional aircraft positions as if seen from above. The air space is divided into
“sectors”: complex three-dimensional airspaces criss-crossed with various routes. Each
sector is managed by a team of 2 controllers: the tactical controller, who monitors air-
craft through the radar screen and give vocal orders to pilots through a radio link, and
the planning controller who organizes flights arriving from neighboring sectors. Con-
trollers rely on flight plans, requests by pilots, requests from other sectors, current
weather and traffic conditions to manage the air traffic, making judgments about the
most efficient and safe way for aircraft to proceed through the air space while keeping
within safe distance from each other. Each controller faces a radar screen displaying the
sector under his/her responsibility. Each aircraft is represented as an icon showing its
current position and smaller icons showing a few of its past positions. The current posi-
tion is linked to a label with the flight identifier, current speed and flight level. In accor-
dance with the controller’s preferred settings, each screen might have a different
configuration (zoom level, pan, visible layers, etc).

In ATC, the graphical information displayed has a high level of criticality. A control-
ler may hold the fates of several thousand people during his work shift and his judgment
is based on well-established work practice, his experience, and his perception of the
displayed information. Therefore, all information has to be coherently displayed, in a
very accessible but not intrusive fashion in order to spare the cognitive resources.

3.2 Design Process

As the tasks are mostly concerned with designing colors, we present the approach we
used in terms of color model, tools, and methods.

Color models, calibration, and tool
RGB is the color model used in graphic computer-cards for encoding color. RGB is
based on additive syntheses of colors using 3 primaries: red, green and blue. Software
developers often use this model to specify color. RGB is a “machine-based” model: it
is difficult to manipulate, and hinders the structuring of color choices. Other color
spaces, such as models proposed by the Commission internationale de l'éclairage
(CIE, International Commission on Illumination) and specially CIE LCH(ab) are
“human perception-based” model. We used the LCH color space for two reasons. As
LCH is a mostly linear perceptual model, it allows predictable manipulations. Fur-
thermore, the L (luminosity), C (saturation), and H (hue) dimensions are semantically
known color dimensions which further structured design: it helps organize colors (and
hence conceptual entities) with three mostly orthogonal dimensions. In the remaining
of the paper, we call “color” the perceptual phenomena referring to a particular LCH
or RGB combination (and not simply the hue). We applied a calibration process on
each monitor we used, so as to minimize the effects of bad rendering chain settings.
Furthermore, we defined a reference ICC profile [8], and used it while designing
colors, so as to maximize consistency between design sessions.

During our tasks, we designed and used our own tool to choose and modify colors.
The tool can import a set of colors, sort colors into group, and display them around a
hue circle using the LCH model and the reference ICC profile. It also allows to ex-
press constraints with “molecules” of color [10], or to modify directly their hue, their
level of saturation, or their level of luminosity (Fig. 1). We will not describe further
this tool, as it is not the purpose of this paper and is only a draft of what should

 Designing Graphical Elements for Cognitively Demanding Activities 139

Fig. 1. The ad hoc tool with the color palette, color wheel, color spaces and color samples

become a genuine instrument. However, it helped us identify relevant aspects about
the design activity and about desirable features of an efficient tool.

Context of the design
During the first task, we designed colors directly in the control room. We had to work
on specific displays that were installed in control centers in order to design with real
activity conditions in mind. In addition, we had to take the controllers’ opinions into
account and iterate with them to reach an agreement and validate our work. As previ-
ously said, a control position comprises two screens. We kept an image of the old
configuration on one display and applied modifications to the other so that we could
compare the results of the transformation and discuss them with the controllers. We
also displayed the old configuration on the old CRT monitors to compare between
color renderings. Using an actual configuration also allowed us to check if looking at
the screen from different visual angles did not influence too much color perception.

The colors were then translated to RGB and inserted in the radar view configura-
tion file, in which color names are matched with their RGB hexadecimal code, e.g.
(name "Orange") (value 0xd08c00). When drawing a graphical element, the
software refers to colors by their name e.g. ConflitEtiquette#N_Foreground:
MC#Orange#NColorModel. Using this indirection, designers can share the same
color between different elements. For example, when an alarm has to be applied both
to a radar track and to an information panel (Fig. 2}, a designer can tag these two
elements with the named color orange. Thus, if the hexadecimal value of orange color
is modified, all orange elements will be changed. The configuration scheme is a way
for the designers to structure color-coding. As such, it makes the task of configuring
the radar view easy, and enables the system to accommodate unexpected changes or
important security fixes. For the two other tasks, we worked on our computer on
which we imported the palette to be changed.

140 G. Tabart et al.

Fig. 2. Two elements: same color code but not identically perceived

3.3 Design Activities Study

Our team includes a graphic designer, an experimental psychologist, and two HCI
specialists. The tasks we present are real-world tasks: they are part of an industrial
process, as changing such systems must follow precise steps. We were then con-
strained in the amount of modifications we were able to recommend.

First task: updating a global color design
Our task was to adapt the color settings of the main radar view software. presents the
interface: the control panel on the left side, the main radar view in the middle, and the
flight lists on the right side. The left panel present manifold options for choosing pan
and zoom level or slices/layers of the sector to displayed, for example. On the main
view, different areas are represented in the background with different colors, while 1
pixel wide lines represent flight routes. Flights current and past positions are repre-
sented by 3 to 5 pixel wide squares. A tag with textual information about the flight
(callsign, level, speed etc.) is linked to the shape with a 1 pixel wide line. The right
panel is reserved for alarms and a list of flights. Selected flight information is dis-
played at the bottom of this panel.

Three kinds of sectors:
military, current and neighbor sectors

Radar tracks of
current sector

Radar tracks
of other sectors

Control Panel

Information
and alarm zone

Fig. 3. The main visualization for air traffic control

 Designing Graphical Elements for Cognitively Demanding Activities 141

We had to adapt the color settings because the system evolved both technologically
and functionally. The CRT displays on which the application runs have been replaced
with LCD displays. Color rendering on LCD differs from CRT: they are more satu-
rated, while the beam is narrower. The difference in rendering completely changes the
overall appearance of the visualization. Furthermore, the CRT displays are square
while LCD displays have a 16:10 ratio, which changes the proportional amount of the
different graphical elements. Beside hardware evolution, the activity regularly
evolves, with the addition of new functionalities, new control procedures or new sec-
tor arrangements. This results in stacked modification, with no real global design.

On the one hand, we had to hold the perceived color constant while moving from
CRT and LCD display. On the other hand, we had to harmonize color palettes be-
tween configurations from five air traffic control centers. Each one has its own color
palette, due among others to traffic particularities. This specific task may seem trivial
(changing colors); but to achieve it, we had to modify almost all colors of the applica-
tion, and a lot of questions and problems were raised.

Second task: organizing flights into categories
The second task was to add new colors to an existing color palette. This requirement
came from a new need in approach control activity. Controllers doing “approach con-
trol” regulate air traffic around airport areas. They needed to distinguish three categories
of flights around Paris, those concerning Orly airport, those concerning Roissy airport,
and in transit flights. They also needed to separate flights into two flows, e.g. Orly or
“Orly-associated” airports. Together with users, a team of engineers had previously
designed and installed a palette with three named colors (“green”, “pink”, “blue”). We
had to harmonize the palette, while keeping identifiable colors.

Third task: redesign of an interface
The third task consisted in the entire redesign of the prototype of a future radar view. We
were less constraint by historical constraints, and freer to test original configurations.
Even though this task is still in progress, it has brought some valuable information.

3.4 Design Accomplishment and Teaching

This section presents a description of our work as designers. The description is organ-
ized around the similar issues we encountered during the three tasks. For each issue,
we describe our goals, the constraints driving our choices and the solutions we even-
tually chose.

Surrounding sectors

Sector under control

Foreground elements
Specific sectorarea under control

other area

L=29% L=34%

Fig. 4. Representation of the graphical elements’ luminosity

142 G. Tabart et al.

Information visibility, luminosity and background
The first issue concerns information visibility (am I able to see an entity?), discrimin-
ability (am I able to differentiate between two entities?), identifiability (am I able to
identify an entity among a known set of entities?) and legibility (how easily read is
the text?). We first worked on luminosity. All the colors we designed are achromatic:
there is no perceptible hue information. In the LHC model, it is implemented by set-
ting color saturation to null.

Luminosity difference enables separation of juxtaposed and layered objects. Sec-
tors are large, uniform surface juxtaposed on the background. Controllers must
discriminate and identify them so as to see if a flight is about to enter or leave their
controlled sector. Layered objects include sectors (background), routes, beacons, and
flights (foreground). Routes and beacons must be visible, while flights must pop out
and be legible.

We first designed sectors luminosities, since they end up acting as the background
for most objects, and foreground colors can only be set according to the background.
Fig. 4 shows the resulting distribution of the gray luminosities of the different sectors:
a gray for the controlled sector, another gray for the surrounding sectors, and a last
gray for a special area. The sector under control is the darkest: this sector is the most
important for the controllers, and flights should be maximally visible here. The sur-
rounding sectors are thus lighter. In bi-layered sector, controllers have to distinguish
between two areas in the sector under control. We spread apart two grays around the
gray of the sector under control. The second area luminosity is farther from the con-
trolled area luminosity than the surrounding sector luminosity because it is more im-
portant to identify the controlled area than the others. However, the second layer gray
must also be different enough from the surrounding sector gray. The four grays are
very close in luminosity (range L=5%).

This example highlighted a problem with the possibilities of choosing a color in a
relatively small range. This issue comes from imposed constraints about gray and
from the fact that the 8bit-per-channel RGB color space used by the system is poor; it
does not contain enough values to express all the shades of a color range. On a ma-
chine color model, grays are made by mixing equally R, G and B. Thus, between
white and black there are only 254 possible grays. Furthermore, we precisely tuned
the set of grays by incrementing or decrementing RGB values one by one, as the con-
version between LCH and RGB was not precise enough. We had to work with the
system color space instead of the perceptual color space.

Some graphical objects must be more than simply visible. For example, alarms
must grab attention when they are displayed. Even though other visual dimensions
such as animation help grab the user’s attention, we chose to separate them from
background or others grays elements with one additional color dimension, the satura-
tion. Indeed, alarms have specific hues that reflect the emergency level. We gave
alarms object a high level of saturation to accentuate the discrimination from back-
ground objects.

Some areas, such as military zone, can be considered as an “alarming” area. To dif-
ferentiate them from civil area and give them an alarming appearance, we decided to
slightly color them with a reddish gray.

 Designing Graphical Elements for Cognitively Demanding Activities 143

Confidence and comfort
The global image must be harmonious: even if it is difficult to formally quantify it,
the satisfaction resulting from using a good-looking image nevertheless matters.
Moreover, it improves the controllers’ confidence into the system. For example, the
planning controller typically configures the zoom level to have a global view of future
flights arriving in his sector. However, for narrower sectors, a lot of gray flights not
under this controller’s responsibility become visible on both sides of the current sec-
tor, because the new screen has a 16/10 ratio. These flights tend to raise the object
density of the image too much. The global scene perception is spoiled and controllers
are less confident in their ability to analyze the image. This resulted in uncomfortable
situations, where controllers were afraid to miss an important event, and felt obliged
to constantly check the image. This issue never arose with square screens.

Global comfort of the scene is also an issue when designing alarms. On the one
hand, alarms must interrupt the user and be remembered, so they are intrinsically not
comfortable. On the other hand, if an alarm comes to persist on the screen (e.g. the
controllers have seen the alarm but they have to finish some other actions first, or
because no action allows the controllers to get rid of them), it should not hinder the
controllers’activity. In order to increase comfort with such persistent alarms, we had
to decrease their saturation level, and make them less “flashy”.

Categorizing and ordering graphical objects
One important point in the design process is categorizing and ordering objects. In the
second task, we had to group flights in categories and flows. The three main catego-
ries had color hues that had been decided in a past design: green, pink and blue. The
controllers proposed a separation into two sub-flows. They designed a solution by
using various color dimensions, which resulted in heterogeneous colors. We worked
with the LCH color space in order to homogenize the design choices. We set apart the
three hue angles by 120 degrees and we distributed the sub-flows around each main
hue. In order to see the results and finely tune the design, we built an image contain-
ing 6 examples of the exact shapes to be colored. We embedded this image in the
tools we used, as can be seen at the bottom left of Fig. 1.

We tried to match the conceptual hierarchy with the perceptual hierarchy. For ex-
ample, the two kinds of flights displayed match their relative importance for the con-
troller. Flights that the controller has currently in his charge are represented in a bright
color and others, controlled by neighboring sectors, are in a darker gray.

Alarms are also graduated: according to their importance, they have a certain hue
and saturation level. We had to conform to alarm hierarchy and cultural color habits
(such as red for danger).

Surface does matter: perception and software design limitation
We observed that surface influences perception: according to the surface on which a
color is applied, the perception of this color is different. For example, we designed a
color for small/medium size military sectors. The color is a gray with a hint of red
(which name is “lie de vin”). We later used the color palette in another control center,
embedding a larger military zone. When this same color was applied to this surface,
the reddish gray seemed too saturated (i.e. too red). We had to decrease the saturation
in order to make sectors look grayer when they are big, but still keep a distinctly red-
dish nuance when they are smaller. Fig. 2 shows a second example with two elements

144 G. Tabart et al.

displayed with the same alarm color code. The first element is a 1 pixel wide text; the
second one is the background of an information panel. Due to surface and/or pixel
arrangement, the same orange color applied to both these graphical elements does not
appear to be the same when a text or a background.

We have been able to accommodate the problem in the first example with a single
color. But it proved to be impossible in the second example: we had to design two
colors. It follows that the configuration file is not as structured any longer: if one
decides to change the orange in the future, one has to change two colors instead of
one. This matter is linked to the use of the indirect method for coding colors that we
presented above. With a simple indirect color-coding scheme, there is no means to
accommodate for differences in color perception due to the amount of surface. This
example shows that the coding method can hinder the controller’s activity: there is a
risk that a color is not identified as corresponding to a particular state, or that two
elements cannot be associated through their color.

Another issue concerns very small elements like one pixel-wide lines or glyphs.
When we applied low saturated colors to such elements, their hues did not come out
very well. These observations can be explained by the fact that, with this kind of
small elements, some pixels may end up being isolated on a background color. They
are thus “eaten” by background colors and lose some of their properties [14].

Human subjectivity: naming color, acceptability opinions.
The next issue is about color perception properties. In the LCH color space we used to
organize colors. L, C and H dimensions are supposed to be orthogonal, i.e. if a de-
signer changes a color along a single dimension, the perception of the other dimen-
sions should not change. However, if some colors can be modified in saturation or
luminosity without losing their essence (think of light or dark blue), some colors can-
not be easily modified without impacting perception of hue. Red for example is iden-
tified as such only for a medium luminosity level, otherwise it is identified as
ochre/brown with low luminosity, and pink with high luminosity. We experienced this
problem when we tried to lower the saturation of alarms, because they were too sharp:
when we applied the modification, the element was not perceived as red any longer,
but as ochre, which completely disabled its identification as an alarm. We had to
change both saturation and hue to keep a color identifiable as red. This phenomenon
shows that colors cannot be modified automatically, or at least without precaution.

A related issue concerns the naming of colors. In their activity, controllers use
color name so as to identify graphical elements. For example, they use the name of
the color to refer to a particular flight status instead of referring to the status itself, as
in “can you check the bathroom green airway?”. In such circumstances, if a color has
to be modified, it must be kept recognizable and identified as the same named color to
accommodate historical use.

Human subjectivity is also an issue. For example, there is a large diversity of opin-
ions about the saturation thresholds between a comfortable color and an uncomfort-
able one. This depends on human perception and sensation but also on the hue value.
Furthermore, opinions vary in time, because of habituation or fatigue: the same per-
son can disagree with a design choice at some time, and then agree with it later.

 Designing Graphical Elements for Cognitively Demanding Activities 145

Display context
The perception of colors is dependent on the type of monitor. Nowadays, controllers
use multiple screens: a radar view, but also a list of flights view, displayed on an
almost horizontal screen under the radar view. The colors used on this screen must
match the colors used on the radar view, as some of them allow elements to be
grouped. However, even after calibration, it proved to be difficult to get exactly the
same colors on both screen. For example, there were situations where up to four dif-
ferent blues were displayed on the screen. All four colors were very close in terms of
LCH. The problem was worse when we took into account the second screen: we had
to spread apart further the hue of each blue so as to allow recognition and association
within the two screens. However, we did not explore further the problem, as our
assignment was only to work on the main radar view. Fortunately, there are other
contextual information that allow the controllers to discriminate between the status
reflected by the colors. Nevertheless, this problem should not be overlooked.

The temperature of the display also influences perception. For example, we changed
the saturation and hue of a slightly colored gray from C=3% to C=2.92% and from
H=156° to H=206° to make the values coherent with other colors. We did it offline,
and to our surprise, when users saw the new result, they said it was too colored. We
learned three things. First, a 50° modification of hue with saturation as low as 3% is
noticeable (and hindering). Second, offline modifications are harmful, even if based on
sensible reflection made by an experienced graphical designer. Third, this is another
example that shows that specifying a gray with R=G=B is harmful, because it does not
take into account every parameter that influences color rendering and perception.

A lasting, iterative activity
Even though it is possible to roughly describe the workflow we used (design luminos-
ity first, then saturation, then small objects), the actual activity was done in an iterative
manner. Besides, as any design activity, the tasks took us some time to accomplish.

First, we had to fix problems introduced by our own new settings: it was difficult
to know the impact of a modification, to remember the dependencies between con-
straints, and to check every possible problem all along the process. Furthermore, we
had to explore several configurations, going back and forth between intermediate
solutions, which was not an easy task to do with the tools we were using. Besides,
designing needs maturation and understanding of the context, for both the designers
and the users. For example, designing the right warning orange required the designer
to really integrate the conditions of apparition and the context of use of such orange.
Regular discussions around the examples and the tools really helped designers and
users to achieve a successful result. Finally, designing a color palette is highly subjec-
tive. This is not to say that users do not know what they want, but diversity between
users, fatigue due to hours of design, changing context conditions etc. make the de-
sign subject to unexpected modifications, at best local, at worst global. As designers,
we had to react accordingly. For example, in the first task, we worked with users so as
to get their feedback and fix problems as soon as possible. After one day of designing,
we had a new palette that was satisfying to both the users and the designers. When we
came back the following day, the users found that the new configuration made the
image too uncomfortable because it was too luminous. We had to lower the luminos-
ity of each color one by one to fix this problem.

146 G. Tabart et al.

4 Implication for Design

In this section, we sum up the experience we gained during our tasks. We identify the
relevant dimensions to take care of, when designing tools and methods to support
graphical elements design.

Design with actual, controllable examples
Actual color design tools allow control of color dimensions and checking of the re-
sults on a square displaying the resulting color [11]. However, to really design a color,
we had to configure the application with the newly designed color, and check it in an
actual scene, in our case a radar view. This takes time and prevents an efficient itera-
tion loop. In our ad-hoc tools, we tried to solve this problem by embedding a sample
of the flights that were supposed to be organized in flows and sub-flows. This allowed
us not only to check the results, but also to completely change the way we handled
designing, as we could test multiple solutions quickly, and adjust swiftly and pre-
cisely each color. In fact, color-design tools should use an imaging model, not a color
model as they do today [6].

Design with multiple examples at once
An object may be involved in multiple situations. For example, when designing the
color of a flight, we had to take into account all the backgrounds over which it could
be displayed. This forced us to go back and forth between different configurations of
the application. Thus, a color tool should not only embed controllable examples, but it
should also allow an easy switching between examples (either by juxtaposing them, or
progressively disclosing them).

The global scene is important
We highlighted the importance of designing on real scene samples. However, it is im-
portant to keep in mind that these samples are only parts of a global graphical scene. All
individual elements build up the perception of the global scene, and global rendering is
the only mean to check the global comfort of the UI. Inversely, the global scene influ-
ences the perception of a single element. In order to experience these interactions, a
designer must work on real scenes, and not just approximate or simplistic ones.

Foster explorative design
Making a design successful requires exploring and comparing alternative solutions.
Our tools hinder exploration, as they require to save the configuration and to relaunch
the application, to compare with early designs. Fortunately, we could use two screens
to compare our designs with the configuration currently in use in control centers: this
scheme must be generalized to any intermediary configuration, whether it concerns a
single element, or a set of elements. Sideviews is an example of such style of
design [15].

Foster constraints expression
We also noticed the importance of expressing constraints and reifying them. During the
design phases, remembering all constraints is difficult. Actually, color molecules im-
plement a kind of constraints, enforced with graphical interactions [10]. Such graphical
constraints would have made group settings easier: it would have allowed us to lower

 Designing Graphical Elements for Cognitively Demanding Activities 147

the luminosities of several elements at once. In addition, constraints expressed with
formulas would check that a change of a parameter does not violate a previously ful-
filled constraint. However it is sometimes difficult to express constraints, either
graphically, or even prosaically: the constraints between the sectors gray are complex,
and a tool that would enforce them would be too cumbersome to use.

Expressing and structuring colors
The LCH model, together with calibrated displays, is the right tool to express color.
The LCH color space allows for predictable manipulations and structured design.
However, when designing very precise values, the resolution of the machine color
model hinders tuning. We were obliged to tune the final RGB values to find the right
set of gray level for background. A right tool would facilitate expressing and manipu-
lating the structured relationships between colors while at the same time allowing
small adaptations using the final color model.

Even if based on the perceptual system, the LCH model is not perfect. The dimen-
sions are mostly orthogonal, but not perfectly orthogonal. The LCH model does not
allow for modifications that would guarantee that a named color is still perceived as
the same. Color expression and constraints must take into account the specificities of
named colors, and provide suitable interaction to help designers manipulate them.

Not just about design: integrate all purposes
During our design activities, we found that our task was not only to reach a final pal-
ette, but also to help users express their needs, to help us justify our choices and con-
vince users, and to help accept the new settings. In the justification phase, by giving
quantitative arguments, constraints would enable to argument for the choice eventu-
ally made. A list of constraints would also act as a proof that criterions required by a
specification document are respected, and would help define an experimental plan to
experimentally assess the design choices [12].

A tool to help designing should not be used only once, but also as an instrument
that would accompany the configured system all along its lifetime. Actually, the tool
itself would play the role of the configuration file of the target application. Such a tool
would reify the design choices and justifications and help designers understand and
respect past constraints that led to a particular design. As such, it would serve as a
design rationale tool, and would extend the notion of active design documents [9, 4].

5 Conclusion and Perspectives

In this paper, we reported about our experience as designers of colors for graphical
elements. We showed that interaction between visual dimensions and display context
makes the design very dependent on small details. We reported how we handled vari-
ous technical, cultural, and perceptual constraints. Based on this experience, we
devised a set of implications for designing future instruments to support graphical
design activities.

Notwithstanding the specificity of cognitively demanding ATC activities where
even the smallest detail is important, the set of implications for design we devised
should be of interest in other contexts. For example, web design requires defining a
palette, but for a design to be coherent and harmonious, the same concerns that we
expressed here should be taken into account. The features of the tool we envision

148 G. Tabart et al.

would be of the same usefulness, whether as a design tool, as a design rationale tool,
or as an evaluation tool.

References

1. Barboni, E., Navarre, D., Palanque, P., Bazalgette, D.: PetShop: A Model-Based Tool for
the Formal Modelling and Simulation of Interactive Safety Critical Embedded Systems.
In: Proceedings of HCI aero conference, Seatle, USA (2006)

2. Bertin, J.: Sémiologie graphique: Les diagrammes -Les réseaux - Les cartes (Broché) 1070
pages Editeur: Editions de l’Ecole des Hautes Etudes en Sciences janvier 31 (1999)

3. Brewer, C.A.: Color Use Guidelines for Mappingand Visualization. In: MacEachren,
A.M., Taylor, D.R.F. (eds.) Visualization in Modern Cartography, ch. 7, pp. 123–147. El-
sevier Science, Tarrytown (1994)

4. Boy, G.A.: Active design documents. In: proceedings of the 2nd Conf. on Designing inter-
active Systems: Processes, Practices, Methods, and Techniques. Amsterdam (1997)

5. Card, S., Mackinlay, J., Shneiderman, B.: Information Visualization Readings in Informa-
tion Visualization:Using Vision to Think, pp. 1–34. Morgan Kaufman, San Francisco
(1998)

6. A Colour Appearance Model for Colour Management Systems: CIE CAM 2002, CIE 159,
2004 (2004)

7. Federal Aviation Administration (FAA). Human factors design standard (HFDS), HF-
STD-001 (March 2008), http://hf.tc.faa.gov/hfds

8. Specification ICC.1:2004-10 (Profile version 4.2.0.0) Image technology colour manage-
ment : Architecture, profile format, and data structure, International Color Consortium
(2004)

9. Lacaze, X., Palanque, P., Barboni, E., Navarre, D.: Design Rationale for Increasing Profit-
ability of Interactive Systems Development., Rationale Management in Software Engi-
neering, pp.182-197 (2005)

10. Lyons, P., Moretti, G.: Incorporating Groups into a Mathematical Model of Color Har-
mony for Generating Color Schemes for Computer Interfaces. In: Proceedings of the 2005
IEEE conference on Virtual Environments, Human-Computer Interfaces, and Measure-
ment Systems, 18-20 July 2005, pp. 80–85 (2005)

11. Lyons, P., Moretti, G.: Nine tools for generating Harmonious Colour Shemes. In:
Masoodian, M., Jones, S., Rogers, B. (eds.) APCHI 2004. LNCS, vol. 3101. Springer,
Heidelberg (2004)

12. Mackay, E.W., Appert, C., Beaudouin-Lafon, M., Chapuis, O., Du, Y., Fekete, J.D.,
Guiard, Y.: Touchstone: exploratory design of experiments. In: Conference on Human
Factors in Computing Systems, pp. 1425–1434 (2007)

13. NASA Color Usage (2004) (March 2008), http://colorusage.arc.nasa.gov
14. Tabart, G., Athènes, S., Conversy, S., Vinot, J.L., Effets des Paramètres Graphiques sur la

Perception Visuelle : Expérimentations sur la Forme, la Surface, l’Orientation des Objets
et la Définition des Ecrans. In: IHM 2007 (2007)

15. Terry, M., Mynatt, D.E.: Supporting experimentation with Side-Views. Communications
of the ACM 45(45), 1006–1008 (2002)

16. Techniques For Accessibility Evaluation And Repair Tools, W3C workink draft (2000),
http://www.w3.org/TR/AERT#color-contrast

17. Ware, C.: Information Visualization: Perception for Design, December 2004, 435 pages,
2nd edn. Morgan Kaufmann, San Francisco (2004)

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 149–154, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Lightweight Coding of Structurally Varying Dialogs

Michael Dunlavey

Pharsight Corporation, 276 Harris Ave., Needham, MA 02492, USA
mdunlavey@pharsight.com

781-449-2719 (home office) 781-974-7833 (cell)

Abstract. A non-language-specific technique is given for programming of user
interface (UI) dialogs. It allows the model (application data) to be pure (con-
taining no UI-specific code). It requires no writing of callbacks or event handler
functions. It allows editing of arbitrary data structures, with dynamic structural
variation. This is achieved with a paradigm in which the UI specification code
need not overtly name or store objects. Object management is performed auto-
matically, facilitated by an incremental control structure. Volume of source
code is reduced by about an order of magnitude compared to common UI tool-
kits. It has been implemented several times and used extensively in industry.

Keywords: Differential execution, Incremental computation.

1 Introduction

We present a practical technique called Dynamic Dialogs(DD) for programming user
interface dialogs in commonly used languages, with about an order of magnitude less
source code and coding errors compared to other methods. It allows real-time update
with arbitrary structural variation.

The brevity arises from automatic management of objects and events. Only a pro-
cedure in the form of one to create the display at a point in time is written (plus some
action code). The same procedure is incrementally re-executed to update the display
in real time, under a control structure called Differential Execution (DE)[1]. While the
procedure is imperative in style, it has the declarative property that it specifies what
the dialog should contain at the time it is executed, not how to change it from a prior
state. The technique does require a certain programmer discipline – to ignore UI ob-
jects and let the mechanism handle them.

The correctness proof, literature review, and wider discussion, not possible to in-
clude in this brief paper format, will be gladly provided to interested readers.

2 A Minimal Implementation

Understanding DE involves two key concepts, that we address in order. The first is
the simple idea of storing data and objects in a FIFO (not in instance variables) so
they can be re-visited upon re-execution. The second is how to accomplish structural
variation. To explain these, we exhibit a minimal implementation in C++ (so as to be

150 M. Dunlavey

very clear about how it works), while asserting that industrial-strength proprietary
versions have been in use for a long time, and a useful one is public-domain[2].

Incremental execution techniques require some sort of cache, and this technique
uses a FIFO queue. For the implementation below (lines 1-28) there is a queue called
q, and two mode booleans, r and w. r means reading from the queue is enabled, and
w means writing is enabled. (We apologize for the anachronistic coding of boolean
values as integers.) Line 3 is a macro called P whose use is explained below. Routine
deGetPut (lines 4-7) is a general routine to read an integer, write an integer, or
both, depending on mode. (Note that reading happens before writing, allowing long-
term storage.) Lines 8-15 implement the IF-END statement and its helper function
ifUtil used for structural variation. (We understand the use of macros may be
controversial.) Lines 16-25 define a primitive routine deLabel, that maintains a
label object in the UI. Lines 26-28 give the control routines Show, Update, and
Erase used by the application program (not shown) to drive the UI.

1 queue q;
2 BOOL r = 0, w = 0;
3 #define P(x)(w ? (x) : 0)
4 void deGetPut(int& oldval, int& newval){
5 if (r) oldval = q.get();
6 if (w) q.put(newval);
7 }
8 #define IF(t) {BOOL rsv = r, wsv = w; if(ifUtil(P(t))){
9 #define END } r = rsv; w = wsv;}
10 BOOL ifUtil(BOOL t){
11 BOOL tOld; deGetPut(tOld, t);
12 r &= tOld;
13 w &= t;
14 return (r || w);
15 }
16 void deLabel(int x, int y, int wid, int hei, string str){
17 int id = 0;
18 if (!r && w) id = MakeANewLabel(x, y, wid, hei, str);
19 deGetPut(id, id); // long-term memory of id
20 if (r && !w) DestroyLabel(id);
21 if (r && w){
22 // if position, size, or contents of Label
23 // not equal x, y, wid, hei, or str, then update it
24 }
25 }
26 void Show() {r = 0; w = 1; deContents();}
27 void Update(){r = 1; w = 1; deContents();}
28 void Erase() {r = 1; w = 0; deContents();}
29

30 int x, y;
31 void deContents(){
32 time_t time = P(Time());
33 P((x = 0, y = 0));
34 deLabel(x, y, 100, 20, "First Label"); P(y += 20);
35 deLabel(x, y, 100, 20, time.ToString()); P(y += 20);
36 deLabel(x, y, 100, 20, "Last Label"); P(y += 20);
37 }

 Lightweight Coding of Structurally Varying Dialogs 151

Lines 30-37 give the specific user interface definition deContents, consisting (in
this example) of three text labels arrayed vertically, with the center label showing the
current time. The application program calls Show to create the display, then calls
Update repeatedly, incrementally updating it each time, and finally calls Erase to
clear it. At all times, the queue contains the ids of the visible labels, and the label
objects themselves remember their position, size, and contents.

Now, to demonstrate structural variation, suppose the center label is only to exist
when the time in seconds is odd. It can be wrapped in an IF-END statement, like this:

 IF(Odd(time.Seconds()))
 deLabel(x, y, 100, 20, time.ToString()); P(y += 20);
 END

If Update is called often enough, multiple times per second, the center label will be
seen to blink in and out of existence, only showing when the seconds are odd, while
the last label moves up and down to make room for it. IF-END works by saving its
test value in the queue, and when that value changes, the enclosed objects are created
or deleted by temporarily turning off r or w, respectively. The programmer (of de-
Contents) need not (and must not) write code to effect these changes.

We hope this gives the flavor of the technique, and now we briefly explain how it
is generalized.

1. The primitive routine deLabel is a stand-in for any routine that manages
the lifetime of a control, widget, or any kind of object. Such a routine, when
it reads from the queue, has to read the same number of values as it writes
when it writes.

2. A sequence of statements, as in deContents, can be any length, as long as
it only calls primitive routines like deLabel, conditional statements like
IF-END, or any subroutine that follows the same rules. Any subroutine that
follows these rules is conventionally given the prefix “de” standing for “dif-
ferential execution”. The routine deContents is so named because it de-
fines the contents of the UI, and it is the routine called from Show, Update,
and Erase.

3. There are many variations on the IF statement, of which useful ones, easily
implemented, are ELSE, ELSEIF, FOR, WHILE, and SWITCH. The state-
ments in the body of such a statement follow rule (2), implying that arbitrary
nesting is allowed.

4. Other computations can also be included, as long as they do not interrupt
flow of control, and as long as they are prevented from executing when w is
false. We call this the erase-mode rule, and the P macro (protect) enforces it.
Notice in the example above that this allows the last label to move up and
down as necessary because (y += 20) only executes when w is true. It also
implies that arguments to subroutines should be protected (but not necessary
if they are only simple constants or global variables). Note that rules (2), (3),
and (4) define a sub-language that is Turing universal, so that arbitrarily
complex displays can be maintained, within resource limits.

152 M. Dunlavey

5. The combined values of r and w constitute global modes, called SHOW, UP-
DATE, and ERASE. Further modes can be added. For example, we can add a
mode called EVENT, the purpose of which is to handle user input events such
as clicking a button or typing into a text edit field.

An example of an industrial dynamic dialog is shown in Figure 1.

Fig. 1. A typical dynamic dialog. All components and structural variation are updated in real
time

3 Reduced Source Code

The reduction in source code is demonstrated by a small example. In Java Swing,
there is an example of how to create simple dialogs, called TextInputDemo[3], shown
on the left in Figure 2. Not counting extraneous code, it is 270 lines.

Fig. 2. TextInputDemo - 270 lines of code vs. 60

On the right is a similar dialog written with DD, available on-line[2]. It is 60 lines
of code, 4.5 times smaller.

4 A Realistic Example

Following is a more realistic example showing how DD can be used in practice[2]. A
dialog is given to edit structurally varying application data. It is included to show 1)
how the application data is unmodified for the UI (1-6), 2) how a complex dialog is
built with 33 lines of code, 3) how one line of code (41,42,45) can manage the life-
time of an input control (and not easily get it wrong), 4) how a repeated group can be

 Lightweight Coding of Structurally Varying Dialogs 153

created with just two lines of code (14,16), and 5) how action code is attached to
button controls with an if statement (18,36).

The application data is an array of health-care patients:

1 class Patient {public:
2 String name;
3 double age;
4 bool smoker; // smoker only relevant if age >= 50
5 };
6 vector< Patient* > patients;

deContents specifies a label, followed by the controls for each patient, followed
by a button that can add a patient. By default, controls are laid out vertically.

10 void deContents(){ int i;
11 // first, have a label
12 deLabel(200, 20, “Patient name, age, smoker:”);
13 // for each patient, have a row of controls
14 FOR(i=0, i<patients.Count(), i++)
15 deEditOnePatient(P(patients[i]));
16 END
17 // have a button to add a patient
18 if (deButton(50, 20, “Add”)){
19 // when the button is clicked add the patient
20 patients.Add(new Patient);
21 DD_THROW;
22 }
23 }

deEditOnePatient is the routine that specifies the controls for one patient, in a
horizontal layout. The controls are a button to remove the patient, an edit control for
the name, an edit control for the age, and a checkbox for the smoker boolean. The
latter control only exists if the age is 50 or more..

30 void deEditOnePatient(Patient* p){
31 // determine field widths
32 int w = (Width()-50)/3;
33 // controls are laid out horizontally
34 deStartHorizontal();
35 // have a button to remove this patient
36 if (deButton(50, 20, “Remove”)){
37 patients.Remove(p);
37 DD_THROW;
39 }
40 // edit fields for name and age
41 deEdit(w, 20, P(&p->name));
42 deEdit(w, 20, P(&p->age));
43 // if age >= 50 have a checkbox for smoker boolean
44 IF(p->age >= 50)
45 deCheckBox(w, 20, “Smoker?”, P(&p->smoker));
46 END
47 deEndHorizontal(20);
48 }

Figure 3 shows the dialog in operation.

154 M. Dunlavey

Fig. 3. A dialog with dynamic structural variation

5 Performance

Time and memory to perform an update is O(N) where N is the number of visible
controls. Updates are performed on every keystroke and mouse click (and on a timer
if desired). An update of Figure 3 (N=24) takes 62ns on a 1.6ghz laptop in the case of
no state change. State changes, of course, incur the additional cost of altering the
controls.

6 Conclusion

Dynamic Dialogs, used for many years in industry, uses a FIFO-based incremental
computation technique to allow dialogs with real-time structural variation to be pro-
grammed with minimal source code and bugs.

References

1. Dunlavey, M.: Differential Evaluation: A Cache-Based Technique for Incremental Update
of Graphical Displays of Structures. Software Practice and Experience 23, 871–893 (1993)

2. Dunlavey, M.: Project DynDlgDemo (2007), http://sourceforge.net/
3. TextInputDemo,

http://java.sun.com/docs/books/tutorial/uiswing/examples/components/TextInputDemoProje
ct/src/components/TextInputDemo.java

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 155–160, 2008.
© Springer-Verlag Berlin Heidelberg 2008

ReWiRe: Designing Reactive Systems for Pervasive
Environments

Geert Vanderhulst, Kris Luyten, and Karin Coninx

Hasselt University – transnationale Universiteit Limburg – IBBT
Expertise Centre for Digital Media Wetenschapspark 2,

3590 Diepenbeek, Belgium
{geert.vanderhulst,kris.luyten,karin.coninx}@uhasselt.be

Abstract. The design of interactive software that populates an ambient space is
a complex and ad-hoc process with traditional software development ap-
proaches. In an ambient space, important building blocks can be both physical
objects within the user’s reach and software objects accessible from within that
space. However, putting many heterogeneous resources together to create a sin-
gle system mostly requires writing a large amount of glue code before such a
system is operational. Besides, users all have their own needs and preferences
to interact with various kinds of environments which often means that the sys-
tem behavior should adapt to a specific context of use while the system is being
used. In this paper we present a methodology to orchestrate resources on an ab-
stract level and hence configure a pervasive computing environment. We use a
semantic layer to model behavior and illustrate its use in an application.

1 Introduction

Although pervasive computing environments have gained much importance over the
last years, they remain among the most complex environments to develop interactive
software for. Generic development environments that explicitly target ambient spaces
are scarce because of several reasons:

Lack of engineering approaches: most pervasive applications are ad-hoc coded and
hence are only applicable in just one situation [5].
New middleware requirements: middleware is required to abstract hardware, deal
with distributed computing resources, steer the migration of user interfaces, etc [7].
Support for situation-aware human-computer interaction: the context in which
tasks are executed affects the user’s interaction with the system [2].

In this paper we report on the ReWiRe framework [8] which supports the dynamic
composition and adaptation of behavior rules in a pervasive environment. With ser-
vices and devices that enter and leave the user’s environment, the ability to support
the dynamic composition of the interactive system is a strong requirement. Our ap-
proach relies on a semantic layer that captures the context of the entire environment
(its users, devices, services, etc) and uses this information to configure the behavior of
resources (section 3). Since orchestration is performed at an abstract level, we can
mask the underlying service technologies (section 4). To accomplish this, we have
underpinned our framework with semantic Web frameworks such as RDF, OWL and

156 G. Vanderhulst, K. Luyten, and K. Coninx

OWL-S [8]. We demonstrate our approach by means of a test-bed that illustrates how
services can be orchestrated and (re)wired at runtime to take advantage of changes in
the environment configuration (section 5).

2 Related Work

The emergence of Web services has lead to different solutions to coordinate distrib-
uted business processes, e.g. BPEL [1]. Pervasive services demand for similar orches-
tration tools that take into account the full environment context. This goes beyond
dealing with preconfigured service compositions, but also involves runtime adaptation
of the environment configuration whilst users are interacting with it. Muñoz et al. [5]
propose a model-driven approach for the development of pervasive systems. A do-
main specific language (PervML) is used to specify the system using conceptual
primitives suitable for the target domain.

Mokhtar et al. [4] also study highly dynamic pervasive computing environments
where users need to perform tasks anytime anywhere, using the available functional-
ity of the pervasive environment. Grimm [3] identified three requirements that should
be fulfilled by systems that support these dynamic interactive pervasive environments:
support for a continuously changing context of execution and make this explicit in the
system design, support for ad-hoc composition of devices and services and collabora-
tion among users should be supported out-of-the-box. With ReWiRe we tackle exactly
these requirements.

3 Environment and Behavior Model

We use a semantic layer to describe the context of use of an interactive software sys-
tem during its lifetime. This layer includes both an environment and a behavior model
which are described by an ontology. Several (domain-specific) ontologies can be
merged at runtime and offer a dynamic schema that evolves when new software com-
ponents become available. The system’s configuration is linked with an instance of
these ontologies. Figure 1 presents the environment and behavior ontology together
with the OWL-S ontologies. The OWL-S ontology describes a service in terms of
what it does (profile), how it is used (model) and how to interact with it (grounding).
Although OWL-S services are usually considered to be semantically enriched Web
services, a service can be any arbitrary piece of functionality that can be used in the
environment. With OWL-S one can describe a service (e.g. its inputs and outputs) in a
uniform way and define a custom grounding that provides details on how to invoke
that service. We use OWL-S service descriptions to attach functionality to ‘resources’
in the environment model. A resource represents everything that can be included in
this model, e.g. users who interact with the surroundings, devices that offer comput-
ing power, storage and input modalities, etc. Domain-specific ontologies that intro-
duce new concepts such as light resources are merged with an upper environment
ontology at runtime. The environment ontology defines ‘sensors’ and ‘actions’ to
interact with these resources:

 ReWiRe: Designing Reactive Systems for Pervasive Environments 157

− Sensor: A Sensor publishes context events that occur in a resource in the environ-
ment. In other words, a sensor provides remote context events to interested re-
sources in the environment.

− Action: An Action has a one-to-one correspondence with an OWL-S service. We
introduce the term ‘Action’ to differentiate between the definition of a service in
the environment model and an OWL-S service. For example, ‘DoSearch’ and
‘DoSpellingSuggestion’ are two OWL-S services (i.e. actions) that belong to the
service ‘GoogleService’.

Fig. 1. The environment and its behavior are described using ontologies

While sensors and actions allow interaction with resources, their output data often
lacks context w.r.t. other resources. Consider for example a ‘LocationService’ that
triggers a sensor each time the location of a tracked object changes. This sensor out-
puts plain coordinates which have few meaning to other resources. Hence we intro-
duce context-aware sensors and actions in the behavior model, such as a ‘NearWhite-
board’ sensor that is triggered when a tracked object approaches the whiteboard in a
room. This sensor interprets coordinates produced by the location sensor and thus
adds a concrete meaning to this data. Semantically enriched sensors and actions act as
building blocks to compose Event-Condition-Action (ECA) rules and are defined in
the behavior ontology. We distinguish the following concepts in this ontology:

158 G. Vanderhulst, K. Luyten, and K. Coninx

− BSensor: A BSensor represents a resource/sensor pair, optionally linked with a
script that acts as a filter on the base sensor: only if certain conditions are met, the
behavior sensor is triggered (e.g. a script could check if the sensor’s output pa-
rameters match certain values).

− BAction: A BAction represents a resource/action pair.
− BScript: A BScript encapsulates script code (e.g. JavaScript) that is dynamically

interpreted. Scripts also have input and output parameters that are read and set us-
ing dedicated variables ($in, $out).

− BRule: A BRule relates a BSensor with a chain of actions and scripts. When the
sensor is triggered, this chain is executed. The output of either sensor, action or
script can be passed as input to subsequent actions/scripts in the chain.

Consider for example the behavior rule listed in figure 2 which will automatically
turn on the light in the hall when motion is detected at this place.

Fig. 2. A behavior rule (b) connects independent resources in the environment model (a): a
light is automatically switched on when motion is sensed

4 Orchestrating Resources

To achieve a desired behavior in an ambient space, the objects in this space need to
adapt to a (new) context of use. Hence different software services that were not ini-
tially designed to collaborate, should be orchestrated and become aware of each other.
Our orchestration approach is based on semantic matching of Web service capabilities
[6]. Semantic matching is a key element to establish late binding and a service-
oriented architecture (SOA) has proven to be useful for this purpose in highly dy-
namic pervasive environments [4].

In ReWiRe the behavior of the environment is described by a set of rules R0,…,Rn
that all contain a reference to a behavior sensor S and a set of executable items I0,…,In
with Ii either a behavior action or a behavior script. When a rule’s sensor is triggered,
its behavior items are executed one by one in the specified order, consuming and
producing data. The inputs and outputs of behavior resources are described by
OWL-S parameters in a similar way as the parameters of a semantic Web service are
described. OWL classes and OWL’s built-in XML schema types (xsd:string,
xsd:integer, . . .) describe a parameter’s datatype. Parameter p1 matches parameter p2
if both parameter types are equivalent or if the parameter type of p1 subsumes the

(a) (b)

 ReWiRe: Designing Reactive Systems for Pervasive Environments 159

parameter type of p2. In other words, the parameter type of p2 is either an exact match
of the parameter type of p1 or it is a ‘super class’ (in terms of OWL class equivalence)
of p1. A service is only invoked if all input parameters that have no (default) value are
set. Otherwise a service call will usually lead to a malfunction.

5 Collaborative Paint Application

A proof-of-concept application built using our framework aims to improve the experi-
ence of painting in the digital world. We try to mimic a real-world multi-user painting
setup by supporting heterogeneous federations of devices. For example, figure 3
shows a user painting on a canvas projected on a touch-sensitive whiteboard, using a
PDA to select and mix colors. The whiteboard represents the painter’s easel while the
PDA acts as his mobile color palette. Users can use their own devices or make use of
the resources already present in the environment (e.g. tabletop device, tablet interface,
. . .) to participate in the painting process.

Fig. 3. A user is creating a painting on the whiteboard using his PDA as a mobile palette, whilst
another user is painting using a tablet interface

While this application could be realized using traditional development ap-
proaches, this would involve a lot of ad-hoc coding. Using our framework, one has
to provide a functional core (‘PaintService’) along with user interface components
leveraging this functionality and a set of behavior rules to orchestrate paint resources
in the environment. Note that legacy paint applications can be (re)used as a func-
tional core in our framework and benefit from ReWiRe’s distribution capabilities. By
differentiating between an engineering and a modeling step, we promote code reuse
whilst being able to alter the behavior of resources at runtime. In an exemplary sce-
nario, we linked a sensor that is triggered when a new device enters the environment
(discovered by the middleware) with a distribution request for the paint canvas inter-
face, provided that the target-device is capable of running this component. Besides,
we installed an RFID tag near the whiteboard that triggers a ‘PaletteTagScanned’
sensor when it is scanned (through a ‘RFIDService’). A behavior rule that is invoked
when this sensor provides new data, executes an action that migrates a user interface
for the color palette to the device that scanned the tag (e.g. a PDA). This allows a
user to move his PDA (equipped with an RFID reader) near the RFID tag to have a
palette distributed to it.

160 G. Vanderhulst, K. Luyten, and K. Coninx

6 Conclusion

In this paper we presented a model-driven approach to coordinate the behavior of a
pervasive application. Our future work includes improving the behavior model and its
tool support. While the behavior rules are currently composed as a linear list of or-
chestrated actions/scripts, more complex behavior rules require a more advanced
structure, e.g. to model conditional tests on output values. A remaining challenge is to
integrate this system-oriented orchestration with a more user-oriented task modeling
approach.

Acknowledgments. Part of the research at EDM is funded by EFRO (European Fund
for Regional Development) and the Flemish Government. Funding for this research
was also provided by the Research Foundation – Flanders (F.W.O. Vlaanderen, pro-
ject number G.0461.05).

References

1. Barreto, C., et al.: Web Services Business Process Execution Language Version 2.0 (2007),
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

2. Encarnaçãao, J.L., Kirste, T.: Ambient Intelligence: Towards Smart Appliance Ensembles.
In: From Integrated Publication and Information Systems to Virtual Information and
Knowledge Environments, pp. 261–270 (2005)

3. Grimm, R.: One.world: Experiences with a Pervasive Computing Architecture. IEEE Perva-
sive Computing 03(3), 22–30 (2004)

4. Mokhtar, S.B., Georgantas, N., Issarny, V.: COCOA: COnversation-based service COmpo-
sition in pervAsive computing environments with QoS support. J. Syst. Softw. 80(12)
(2007)

5. Muñoz, J., Pelechano, V., Cetina, C.: Software Engineering for Pervasive Systems. Apply-
ing Models, Frameworks and Transformations. In: Int. Workshop on Software Engineering
for Pervasive Services (SEPS 2006) (2006)

6. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic Matching of Web Ser-
vices Capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp.
333–347. Springer, Heidelberg (2002)

7. Vanderhulst, G., Luyten, K., Coninx, K.: Middleware for Ubiquitous Service-Oriented
Spaces on the Web. In: Proc. of the 21st Int. Conf. on Advanced Information Networking
and Applications Workshops (AINAW 2007), pp. 1001–1006 (2007)

8. Vanderhulst, G., Luyten, K., Coninx, K.: ReWiRe: Creating Interactive Pervasive Systems
that cope with Changing Environments by Rewiring. In: Proc. of the 4th IET Int. Conf. on
Intelligent Environments (IE 2008) (to appear, 2008)

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 161 – 166, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Toward Multi-disciplinary Model-Based (Re)Design of
Sustainable User Interfaces

Jan Van den Bergh, Mieke Haesen, Kris Luyten,
Sofie Notelaers, and Karin Coninx

Hasselt University - tUL - IBBT, Expertise Centre for Digital Media,
Wetenschapspark 2, 3590 Diepenbeek, Belgium

{jan.vandenbergh,mieke.haesen,kris.luyten,sofie.notelaers,
karin.coninx}@uhasselt.be

Abstract. This paper reports on our experience in using the MuiCSer process
framework for the redesign of the user interface for operating an industrial digi-
tal printing system. MuiCSer is created to support the user-centered interface
design of new and legacy systems by a multi-disciplinary team. The process
framework is created to enhance increased flexibility, usability and sustainabil-
ity of the designed user interfaces. Resulting user interfaces are decoupled from
the application logic, but still help to maintain consistency with the available
functionality even when this changes over time. This report focuses on the us-
age of the task model during the analysis of the current user interface, the crea-
tion of user interface prototypes at various fidelity levels and the still ongoing
realization of a flexible user interface management system to support future
changes of the deployed user interfaces.

1 Introduction

In contrast with traditional design efforts, our challenge is to create a new design that
can evolve together with the rest of the application: a sustainable user interface. The
purpose is to reduce the cost of further improvements to the software that will be
applied after the design has finished. It is very likely that a complex industrial applica-
tion such as the one we are targeting, will be updated regularly (as evidenced by the
history of the redesigned software). Because of the extreme complexity of such an
application, the efforts of updating application logic as well as the related user inter-
face have a high cost.

Furthermore, in terms of user interface complexity, we are dealing with a user in-
terface that surpasses the complexity of most user interfaces a regular user has to deal
with. The user interface of such a high-end digital printing system can easily contain
hundreds of different windows (tabs are counted as a separate window) although this
amount can vary depending on the needs of the specific user. It is easy to loose track
of both the overview and the important details when only traditional design method-
ologies (e.g. card sorting and paper prototypes) are used to steer the redesign.

A model-based approach allows capturing these inter- and intra-window relation-
ships and link window sequences with tasks that need to be supported using e.g. a task

162 J. Van den Bergh et al.

model. It is however equally important to be able to trace the individual components
in the final user interface back to the tasks they support. When dealing with the redes-
ign of such complex user interfaces in combination with new as well as changing
requirements, a fully automated transformational approach is not an option. To sup-
port these goals we used a new software engineering process framework, Multi-
disciplinary user-Centered Software engineering (MuiCSer), that is visible for the
customer, has some degree of agility and allows more easy updates once a design is
deployed as the final user interface [1]. This approach is based on our experience with
model-based approaches, user-centered user interface design and software engineer-
ing processes to provide a solution that supports user-centered interface redesign for
complex evolving systems.

MuiCSer does not stop at first delivery of the system and thus the necessary tools
and runtime environment need to be provided to support further evolution of the sys-
tem. Therefore we ensured that existing commercially supported tools can be used to
further develop the system, while custom tools are provided to keep track of the
model relations. In this paper, we discuss our first results of this approach to redesign
the user interface of a complex industrial application into a sustainable user interface.

2 MuiCSer

The usability of a system can be improved by using a User-Centered Design approach
as described in ISO 13407 [2]. When a redesign concerns the user interface of a com-
plex system, it is also important not to loose track of the functionality offered by the
application logic. Model-based approaches can help us to preserve the link between
the user interface and the application logic. We use the MuiCSer process framework
[1] to provide a smooth integration between user interface design and software devel-
opment and to support the involvement of a multi-disciplinary team.

The MuiCSer process, shown in Fig. 1, starts with a user and task analysis to learn
about the tasks end users carry out with the existing interface. Other behavioral as-
pects of the end-user operating the interface are also captured by observations and
contextual inquiries. Narrative reports, personas [5] and scenarios typically result
from a user and task analysis, while a sensible and correct redesign of a system re-
quires more structured models about the user requirements and the application logic.
Existing manuals are also examined to complete the task analysis; these provide a
clear overview of what functionality is available and how the supported functionality
is communicated to the end-users. It also allows us to filter out the most important
workflow patterns supported by the system.

The results of the analysis, obtained in the first stage, are used to progress towards
system interaction models and presentation models. We label this stage the structured
interaction analysis stage. Models support a combination of user requirements and
functional requirements in order to keep track of the application logic during the
design and the development of the user interface. These models contribute to low-
fidelity prototypes which evolve into high-fidelity prototypes and the final user inter-
face. Both low- and high-fidelity prototypes are often created by designers, thus tool
support is required that checks for consistency with other models, such as the task
model while creating the prototypes.

 Toward Multi-disciplinary Model-Based (Re)Design of Sustainable User Interfaces 163

MuiCSer supports the iterative development of systems, including several evalua-
tions, verifications and validations of the artifacts. For the development of complex
systems we propose to use a central repository that keeps pace with changes of sev-
eral artifacts and maintains and labels relationships between artifacts.

Fig. 1. The MuiCSer framework illustrated using artifacts as they were created in the Warhol
project. Note that the visualization of the prototypes and final user interface are intermediate
results and do not reflect the actual interfaces.1

3 Applying MuiCSer : UI Redesign of a Complex System

The digital printing system being redesigned can be managed using two different
applications. Since these applications were extended with new functionality over
several years, a redesign of the user interfaces became required to obtain one single
coherent user interface and to improve the usability. The redesign cycle started with
usability researchers who carried out a user and task analysis. This resulted in a report
including findings on the observations, a set of personas and a high-level Hierarchical
Task Analysis. In this section we describe the path we take to progress from this re-
port toward a more detailed task model, and how this model was and is being used to
redesign the user interfaces.

1 The usability researchers opted for mid-fidelity instead of low-fidelity prototypes.

164 J. Van den Bergh et al.

3.1 Creating the Task Model

Based on the report of the usability researchers and the existing software and manu-
als, detailed task models were created. We use the ConcurTaskTrees (CTT) notation
to specify task models with CTTE [3]. CTT supports task hierarchies with different
types of tasks, which are related with temporal operators. Since it is unnecessary to
detail all the tasks (e.g. extend the task hierarchy), the tasks that are focused on during
the first iteration are elaborated. Although the task model contains detailed informa-
tion of a selection of tasks, a task count of the CTT exceeds 1850 tasks2. The leaf
tasks in this task model do not always correspond to a single user action. In case of
command tasks, a task can be mapped onto a single action. E.g. a task “Confirm
configuration changes” corresponds to a single action; in this case a button press.
Whenever a task involves changing or selecting data, a task might correspond to mul-
tiple actions.

3.2 Prototyping

Mid-fidelity prototypes were created by the usability researchers and are based on the
results of their user and task analysis, usability guidelines and their experience in the
creation of this kind of artifacts. During the creation of these mid-fidelity prototypes,
the CTT models were used to determine the completeness and correctness of the pro-
totypes. These prototypes were discussed within the project team and after several
reifications of these prototypes they were considered to be stable enough to be turned
into high-fidelity prototypes.

The high-fidelity prototypes are created using XAML3, an XML-based language to
describe the user interface for an interactive application. One of the motivations for
choosing XAML was based on the rich tool support that is offered, both for designers
and developers. These tools enable fast creation of the high-fidelity prototypes using
drag-and-drop when possible and custom development for selected parts of the user
interface.

To ensure that the created prototypes are consistent and complete with respect to
the task model, the XAML describing the user interface controls is enhanced with
structured annotations which indicate the corresponding task model. Annotations are
inserted in the XAML code that link the parts of the user interface description (sub-
trees because of the XML-language) with tasks from the task model. Our approach
can be used with other XML-based user interface description languages such as
XForms4, UIML5 and UsiXML6.

With these simple links in place, we can build tools that support developers and
designers to maintain consistency and correctness between the task model and high-
level prototypes. For example, we created a tool that automatically verifies whether
the user interface is complete with respect to the tasks from the task model. I.e. all

2 These tasks are spread over more than 20 separate CTT files to deal with the complexity and

limitations of the tools.
3 http://msdn2.microsoft.com/en-us/library/ms752059.aspx
4 http://www.w3.org/MarkUp/Forms/
5 http://www.oasis-open.org/committees/uiml/
6 http://www.usixml.org

 Toward Multi-disciplinary Model-Based (Re)Design of Sustainable User Interfaces 165

tasks that need to be explicitly presented to the user have a corresponding user inter-
face part in the prototypes. Referring back to Fig. 1, this is one example of informa-
tion that is maintained throughout the different stages in our process.

4 Toward a Runtime System Supporting Evolution

Because the final user interface will be used by users that have divergent skillsets and
that need to perform other tasks, the user interface should be tailored according to the
user role. Furthermore, the user interface has to be able to smoothly evolve together
with the capabilities of the printing system as well as the changing preferences of the
user. One of the challenges is to support this evolution in the systems’ user interface
and to support changes in design while maintaining consistency and correctness of the
user interface. We created a user interface management system (UIMS) that exploits
the relationships between the tasks and the user interface descriptions that are created
during design. A single XAML-file, stored in the UIMS, describes the contents of a
single window (we count each tab as a separate window) and can be linked to multi-
ple tasks. The latter indicates a single window can be used to perform multiple tasks.

The availability of the tasks within a single window as well as the organization and
availability of the windows within the user interface of the application is determined
by a task model that is associated to a specific user. The concrete visualization of the
window structure will be determined by the project team, based on the most appropri-
ate user interface patterns, such as those described by Van Welie 7, and the results of
user tests and integrated in the user interface management system.

A user-specific task model will be created in a similar manner as the creation of
multi-device user interfaces based on a single task model [4]. One will start from a
task model that describes the complete capabilities of the digital printing system that
are exposed through the user interface. Tasks that are not relevant for a specific user
(or group of users) can be omitted from this task model and will consequently be
hidden from the user interface.

Extending the system can then be done by a simple two or three step process; by
adding a task to the task model and adding the necessary XAML-file (fragments) and
optionally updating the user profiles when the added functionality is not desired for a
specific user. The system then takes care of the changes in the user interface structure
implied by these additions.

Task model relationships specified between the tasks can be used to see the impact of
changes in the user interface due to changes in the user profile or offered functionality.

5 Discussion and Conclusions

This paper presented our user-centered software engineering process framework,
MuiCSer , and showed how it is currently instantiated to redesign a complex user
interface into a sustainable user interface. The process makes extensive use of
different models, of which the task model is the most prominent during the first stage.

7 http://www.welie.com/patterns/index.php

166 J. Van den Bergh et al.

The user interface management system, although still very much work in progress, is
already used with a selection of models to support consistency and correctness during
interface design. The fact that models are reused later in the design process improves
the maintenance of these models and eases the evolution of the system since (part of)
the design choices are still up-to-date for subsequent iterations.

In our experience this simple yet effective approach to combine several artifacts
helps to structure the redesign of a user interface for a complex system, and to support
collaboration among different members in a multi-disciplinary team. We were able to
communicate clearly to the company’s development team how the task model is
reflected in the user interface, and how changes in task structure are propagated to-
ward the user interface design. Furthermore, designers were able to create designs
with their own tools, in this case Microsoft Expression, and check whether the created
designs covered all tasks that need to be supported. This provides us with the neces-
sary means to combine creative activities with the more rigid approach that is typical
for model-based user interface design.

Acknowledgements. This research was performed in the context of the IWT project
Warhol of Punch Graphix in cooperation with usability researchers of IBBT-CUO
(KULeuven). The MuiCSer Framework is also based on our experiences in the IWT
project AMASS++ (IWT 060051). Part of the research at the Expertise Centre for
Digital Media is funded by the ERDF (European Regional Development Fund) and
the Flemish Government.

References

1. Haesen, M., Luyten, K., Coninx, K., Van den Bergh, J., Raymaekers, C.: MuiCSer: A
Multi-disciplinary User-Centered Software Engineering Process to increase the overal User
Experience. In: Proceedings of the 10th International Conference on Enterprise Information
Systems, Barcelona, Spain (June 2008)

2. International Standards Organization. ISO 13407. Human Centred Design Process for Inter-
active Systems. Geneva, Swiss (1999)

3. Mori, G., Paternò, F., Santoro, C.: CTTE: support for developing and analyzing task models
for interactive system design. IEEE Transactions on Software Engineering 28(8), 797–813
(2002)

4. Paternò, F., Santoro, C.: One model, many interfaces. In: Kolski, C., Vanderdonckt, J. (eds.)
Computer-Aided Design of User Interfaces III, Proceedings of the Fourth International Con-
ference on Computer-Aided Design of User Interfaces, vol. 3, pp. 143–154. Kluwer Aca-
demic Publishers, Dordrecht (2002)

5. Pruitt, J., Adlin, T.: The Persona Lifecycle: Keeping People in Mind Throughout Product
Design. Morgan Kaufmann, San Francisco (2006)

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 167–180, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Model-Based Approach to Supporting Configuration in
Ubiquitous Systems

Tony McBryan and Phil Gray

Department of Computing Science,
University of Glasgow, Lilybank Gardens, Glasgow, G12 8QQ, UK

{mcbryan, pdg}@dcs.gla.ac.uk

Abstract. This paper presents an approach for representing, and providing
computer support for, the configuration of interactive systems, particularly
ubiquitous systems, that offers a flexible method for combining a wide range of
configuration techniques. There are many existing techniques offering dynamic
adaptation, ranging from fully automatic through context-sensitive to user-
driven. We propose a model that unifies all of these techniques and offers a rich
choice of ways of combining them, based on the concept of configuration pos-
sibilities, evaluation functions applicable to sets of these possibilities and
approaches for parameterising the functions and combining the results. We pre-
sent a concept demonstrator implementation of the model, designed for home
care systems, and describe a set of use cases based on this prototype implemen-
tation that illustrate the power and flexibility of the approach.

Keywords: ubiquitous systems, dynamic configuration, model, evaluation.

1 Introduction

Ubiquitous systems typically use large numbers of sensors to detect the state of the
environment of use [1] and offer multiple different devices and methods of interacting
with users [2]. The multiplicity and volatility of these contexts of use, including the
presence or absence of devices and resources, especially when the users or devices are
mobile, leads to a demand for systems that are capable of extensive and regular recon-
figuration in regards to choice of interactive techniques and components. In addition,
as the opportunities for reconfiguration grow, so does the likelihood that users will
attempt to appropriate their systems to exploit this flexibility to provide new applica-
tion functionality in new ways.

This situation has led to the development of software architectures and technolo-
gies that enable this dynamic reconfiguration to take place and also to the develop-
ment of a variety of techniques for carrying out this configuration. The latter range
from conventional preference settings through interactive configuration interfaces to
autonomic context-sensitive systems that adjust the form of interaction to the current
state of the user and setting; perhaps based on sophisticated policies or via matching
to previous similar patterns of use. Each of these techniques is useful in certain cir-
cumstances and, indeed, combinations of the techniques are also possible.

168 T. McBryan and P. Gray

From both a design and implementation point of view, it would be desirable to
treat all of these techniques in a unified way, as variants of a single coherent model of
configuration, so that they can be more easily compared, transformed, combined,
refined and swopped. This paper presents such a model, based on the notions of con-
figuration possibilities and evaluation functions over such possibilities. We shall ar-
gue that this model offers a rich design space for a range of configurations, making it
easier to combine techniques and to develop new variants of existing ones.

In Section 0 we briefly review related work on the configuration of user interfaces
to identify the techniques we wish to unify. Section 3 presents our model-based
approach to configuration followed by Section 0 that describes a proof of concept
based on a set of configuration examples in the home care domain, implemented us-
ing a software framework we have built. Section 0 offers our conclusions and an indi-
cation of future work.

2 Related Work

Many techniques for choosing an appropriate interaction technique or device have
been developed in the context of ubiquitous systems design. In this section we sum-
marise some of the most popular approaches with some exemplar implementations.
This section is intended to discuss the use of the system from the perspective of a
typical user and does not compare architectural features of particular approaches.

Thevenin and Coutaz [3] present the notion of plasticity that identifies equivalence
of usability as the primary criterion for assessing interaction adaptation. Their imple-
mentation demonstrates automatic and semi-automatic generation of user interfaces
exhibiting plasticity.

Manual configuration is frequently used to allow the user complete control over a
configuration. Using a manual approach it is necessary for the user to specifically
make a modification to the configuration when circumstances change. This configu-
ration can be stored in a configuration file, possibly expressed in an appropriate speci-
fication language [4] but often commonly manipulated by an interactive editor such as
Jigsaw [5] which uses a “jigsaw pieces” metaphor to enable a user to see the intercon-
nection of devices and to manipulate them to meet changes in demand. Another simi-
lar approach is Speakeasy [6] that allows direct connections, as in Jigsaw, but also
employs a task based approach where templates are “filled out” with the appropriate
devices by the user.

Context sensitive systems are systems that choose the interaction techniques to use
based on data gathered from the user’s environment – their context. Schmidt [7]
describes a hierarchical model of context which includes the user model(s), social
environment, task model, environmental conditions and physical infrastructure from
which adaptations are derived.

Another approach is to define a “utility function” that automatically decides which
interaction styles or devices should be used to communicate with the user. These
utility functions may then make use of any contextual data gathered as part of the
function. This is the approach taken by Sousa and Garlan [8] where a utility function
is used to express the combination of the user’s preferences, the suppliers preferences
and quality of service preferences. The task of making a choice is then an effort to

 A Model-Based Approach to Supporting Configuration in Ubiquitous Systems 169

maximise this utility function. This approach is also found in Supple [9] which per-
forms user interface adaptation according to a utility rule based on pre-assigned
weights for screen components.

Rule based reasoning can be used to select appropriate interaction techniques
automatically based on rules or policies manually set by the user. In the work of Con-
nelly and Khalil [10] this takes the form of policies for devices and interaction spaces
being combined to determine the interaction methods that are allowed to be used.
This approach is also a clear influence on the current work being undertaken by W3C
Ubiquitous Web Applications [11] where content and presentation are selected based
on selection rules based on the characteristics of the device(s) currently in use.

Another approach used by the Comet (Context of use Mouldable widgET) archi-
tecture [12] is to employ introspective components that publish quality of use guaran-
tees for a set of contexts of use. Adaptations are triggered by policies; at which point
the current context of use will be derived and compared against the quality of use
guarantees published by available Comets to make a decision on which component
should be used. Each component must therefore be able to identify its own quality of
use statistics in each of the contexts of use it is possible to appear in.

It is also possible to use “recommender” or collaborative filtering techniques to
make the decision. A recommender algorithm may use a collection of preference or
usage histories and compare them to similar information, either from the same user or
from multiple users. This approach is used in the Domino system [13] to determine
which components a user has access to using a history of frequently used components
from other users.

A final approach to be considered is employed by the ISATINE framework [14]
based on the USIXML mark up language. ISATINE is a multi-agent architecture that
decomposes the adaptation of a user interface into steps that can be achieved by the
user, the system and by other external stakeholders. The user can take control of the
adaptation engine by explicitly selecting which adaptation rule to prefer from an ad-
aptation rule pool in order to express the goal of the adaptation more explicitly but
does not provide a mechanism to utilise multiple configuration techniques at run-time.

All of these techniques are useful in certain circumstances, but currently no system
provides a unified method of offering them all, both separately and in combination.
Our approach, described below, is intended to provide this unification.

3 Unified Model-Based Approach

Our approach to the configuration of interactive systems is to represent each of the
techniques discussed in Section 0 within a unified model. This approach allows de-
signers to provide many configuration techniques in parallel or in combination and
are potentially modifiable at run-time and capable of being driven by user interaction.

3.1 An Application Context

Our work has been carried out as part of MATCH1, a multi-university research project
devoted to investigating infrastructure support for dynamically configurable, multimodal

1 http://www.match-project.org.uk

170 T. McBryan and P. Gray

ubiquitous home care systems. For that reason, we illustrate our approach by the use of a
running example taken from this domain. In this example Fred and Shirley are an older
couple with chronic conditions that could be ameliorated by appropriate use of ubiqui-
tous home care technology. In particular, Shirley has worsening arthritis and is no longer
able to move around the house easily; she relies on Fred for tasks such as controlling the
heating system, closing the curtains and for most household chores. Fred recently had a
stroke. He is still physically fit but has become more and more forgetful since the stroke
and requires continual reminders for when to take his medication. He is also hard of
hearing.

3.2 A Unified Model of Configuration

The model we present here is designed around the concept of evaluation functions
that are responsible for both identifying opportunities for change as well as reflection
on the alternatives available to make a change.

To do this we introduce concept of a configuration possibility (hereafter, ‘possibil-
ity’, for short) which is an encapsulated solution (consisting of interaction compo-
nents, techniques and devices) that can offer interaction between a system task and a
user. A possibility includes any software components needed to perform data trans-
formations related to the interaction as well as references to the components that will
be responsible for rendering the interaction via physical devices.

Fig. 1. A typical configuration possibility

Consider a medication reminder for Fred; one of the possibilities, as shown in Fig-
ure 1, might be to deliver the reminder via a speech synthesis system. The possibility
would include the component representing the physical device (the speaker), the
component representing the speech synthesis system (responsible for converting text
to speech) and the component that converts a medication reminder into the appropri-
ate textual alert.

To construct a set of possibilities it is possible to use a service discovery system
that models relationships between components to construct a directed graph of the
available components suitably configured. By identifying interactive components it is
possible to traverse the graph with the goal of constructing a set of possibilities that
can be used with the application task.
Figure 2 shows a typical, albeit simple, graph that may be constructed from the data in
a service discovery system. In this graph we can deduce many different possibilities
(such the speaker using polite text and a female voice); we have shown a speaker that
requires the choice of two of the intermediate components as well as a GUI that does
not require intermediate components. By starting from the reminder task as the root
node we can perform as simple breadth first traversal to determine each possibility in
the graph.

 A Model-Based Approach to Supporting Configuration in Ubiquitous Systems 171

Speaker

Reminder
Task

Reminder to
Polite Text
Converter

Reminder to
Urgent Text
Converter GUI (TV)

Female
Speech

Synthesis

Male Speech
Synthesis

Fig. 2. A typical graph

More complicated graphs including cycles will require a more robust traversal al-
gorithm to determine every possibility. Some unanswered questions currently remain
over the likelihood of graph explosion, and what impact this may have on perform-
ance, given unrestricted, large numbers of possibilities. This will be a subject of fu-
ture research and is not addressed here; to date we have not experienced performance
problems with graphs of moderate complexity (~70 nodes, ~120 edges).

Once the graph has been built and traversed to create a set of possibilities we can
begin to analyse the appropriateness of each possibility. To do this we evaluate each
possibility by using one, or many, evaluation functions.

The purpose of an evaluation function is to rank, filter or otherwise analyse these
possibilities such that a configuration decision can be made. Evaluation functions can
have a many-to-many relationship with task assignments; there may be many evalua-
tion functions used to review the possibilities for the medication reminder task while a
single evaluation function may be used simultaneously for many tasks.

Speaker
Reminder

Task

Reminder to
Polite Text
Conveter

Reminder to
Urgent Text

Conveter

GUI (TV)

Female
Speech

Synthesis

Male Speech
SynthesisReminder

Task Speaker

Reminder
Task

Doctors Approval
Usage History

Ranking

X

3

1

2

A

B

C

Fig. 3. Example results from the application of a ranking evaluation function and an approval
evaluation function

172 T. McBryan and P. Gray

Figure 3 shows one possible result from the application of two evaluation functions
(a ranking and an approval function) to some of the possibilities we could have gener-
ated in the previous step. The Usage History Ranking is an example of an evaluation
function which uses the recommender approach to rank possibilities while the Doc-
tor’s Approval function allows or disallows possibilities; here the Male Speech syn-
thesis is disallowed as it sounds too similar to Fred and can confuse Shirley.

To allow multiple evaluation functions to be used with a single task it is possible to
use evaluation functions to combine results via function compositions (in effect a
meta-evaluation function). This allows the results of multiple approaches (imple-
mented as evaluation functions) to be combined together into a single function that
can be mapped onto the task.

Fred’s
Preferences

Usage
History

Analysis

Doctor’s
Approval

Additive Combination
Meta-FunctionA 1

B 2
C 3

A 3
B 1
C 2

Approval Combination
Meta-Function

Lowest Rank Meta-
Function AA 4

C 5

A √
B X
C √

A 4
B 3
C 5

Fig. 4. Example results from the combination of three evaluation functions

This approach would allow, for example, the selection of an interaction technique
for the notification task to be based on a combination of context sensitive, manual
and/or automatic reasoning. A typical example of this might be that the users’ prefer-
ences are weighted against the results of a collaborative filtering system receiving
input from multiple users, based on the success of similar tasks.

Figure 4 shows one possible method by which three evaluation functions (2 rank-
ing and 1 approval) might be combined together in this approach to determine which
possibility to use from the three available possibilities shown in Figure 3.

Two of the evaluation functions are implemented as ranking functions which
“score” each of the possibilities. The individually ranked results of both ranking func-
tions are first combined together using an additive meta-function before the results of

 A Model-Based Approach to Supporting Configuration in Ubiquitous Systems 173

this are combined with the results of the doctor’s approval evaluation function. The
result of this is that possibility ‘A’ was the possibility with the lowest combined rank
that had also been approved and was therefore selected.

The meta-functions can be replaced or changed at will to provide different results,
for example the choice of meta-function to combine the results of the two ranking
functions could have instead been multiplicative in nature which may have had a
different result.

A useful result of this is that the system has inbuilt support for multiple, conflicting
stakeholders using the system. Each stakeholder in the task can have their own
evaluation function(s) modelled after their views or requirements – the results of
which can then be combined within the same framework. This allows the natural
specification of how conflicts can be solved by changing the meta-evaluation function
being used to combine the results.

The result of an evaluation function (or set of evaluation functions) should be the
set of possibilities to use for interaction; as shown in Figure 4. In this case, a single
technique has been selected, although functions might also enable multiple concurrent
techniques to be used.

Evaluation functions are a flexible method of reasoning about the available possi-
bilities and can be applied at different levels of granularity; some evaluation functions
may consider an entire possibility while others may only operate over selected por-
tions of a possibility; for example an evaluation function may only consider the
choice of physical output device in its reasoning. Evaluation functions may utilise
external sources of data such as context or usage history and can be parameterisable
such that a single evaluation function may be reused in multiple situations (such as
gathering of user preferences from multiple stakeholders) or even called recursively.

3.3 Interactive Evaluation Functions

Evaluation functions can, and often must, be interactive components themselves.
Users can (i) provide inputs prior to function creation or use (e.g., preference files
read by a function), (ii) interact with an evaluation function directly as part of the
evaluation process, (iii) indicate a changed opinion thus triggering a re-evaluation or
(iv) interact implicitly, in which some evaluation functions gather usage information
or indications of the user’s satisfaction over time to determine how to rank or filter
possibilities.

Similarly, a meta-evaluation function can be interactive. In the example, in Figure
4, the “lowest rank” meta-evaluation function could be replaced with a function that
presents the two remaining choices to the user along with the current rankings and
asks them to choose which should be used.

The process of allowing for user interaction as a part of this process means that an
evaluation process may need to be deferred until the user has responded. In this case a
provisional decision may have to be made in the meantime to provide a service until
the user has had sufficient time to complete their interaction.

Since we can combine approaches systematically, we can have a combination of
automatic and manually-controlled evaluation function in use at the same time. We
may also have policy-based evaluation functions mixed in – we may even have multi-
ple different policy specification languages being used at any one time.

174 T. McBryan and P. Gray

We envisage two primary modes of interaction: (i) one-off or sporadic interaction
where the user specifies their needs and wants in advance and rarely changes them,
and (ii) continuous interaction where the user frequently interacts with the system, or
plans to interact with the system, to assist in the choice of suitable interaction
techniques.

In addition, we believe that evaluation functions (and meta-evaluation functions)
may be required to provide explanatory information or reviews on the current state of
the system or on previous choices they have made so far; similar to the approach in
the Crystal application framework [15]. This allows users to have an idea of the rea-
soning by which an interaction technique was chosen (why is the system behaving as
it is?) or to be presented with the currently available choices and the ways in which
the system can assess them (how might the system behave if changed?).

In summary this approach allows us to combine together automatic reasoning func-
tions together with interactive functions within a unified model where conflicts be-
tween stakeholders can be represented explicitly.

3.4 Interaction Evolution

One of the aims of this approach is to support interaction evolution. The concept of
evolution we use here is influenced by Dourish [16], MacLean [17] and Fickas [18].
Each of these authors identifies the ability to appropriate, tailor and evolve a system
over time as a key feature of ubiquitous systems. We define interaction evolution as
multiple related instances of interaction configuration that have a directed goal to
change some aspect of the system with respect to certain attributes of quality. For
example, an elderly user might develop a visual impairment (e.g., cataracts) that re-
quires a reduction in dependency on conventional visual displays. Over time their
visual capacity might deteriorate, perhaps resulting in the invalidation of the current
configuration choice. Our approach enables us to build evaluation functions that oper-
ate over longer periods of time (sequences of choices), thus supporting such evolution
by exploiting persistence.

4 Validation of Our Approach

In the remainder of this paper we will discuss an initial validation of our approach
through example concept demonstrator applications, based on the scenario presented
in Section 3.2 (see section 4.2 for more details).

4.1 The MATCH Software Framework

These demonstrators have been implemented in a software framework developed
within the MATCH project. This section describes the architecture briefly; further
details of the implementation of this framework are available in [19].

Within the framework architecture (Figure 5) sets of application tasks are con-
trolled by a Task Manager component, responsible for starting, stopping and other-
wise controlling tasks and their parameters.

 A Model-Based Approach to Supporting Configuration in Ubiquitous Systems 175

Data
Sensors Interaction Components

Control

GUI Abstract UI

Analogue

Sensor
Task Manager

Speech Abstract UI
Tasks

Digital

Sensor

Earcon Abstract UI

Service Discovery
Interaction

Manager Policy Service Ontology Service

Evaluation

Functions

Fig. 5. MATCH Architecture

Components such as sensors and interaction components are provided as logical
software “bundles” within the system which can be dynamically added and removed
at runtime. Components are not limited to those which are locally accessible; for
instance some components may be implemented as web services which are hosted
remotely. Interaction components and tasks are registered with a service discovery
system, supported by an Ontology Service [20], that can be used to hold high-level
descriptions of components and tasks. Evaluation functions benefit from the Ontol-
ogy service which allows reasoning about classes of related components and their
effects on the user based on the information held by the ontology service.

Communication between components and tasks is brokered by a publish/subscribe
message handler.

The Interaction Manager subsystem is responsible for the implementation of the
approach described in Section 0. When a task is started, it will request from the Inter-
action Manager any bindings to interaction components it requires. The Interaction
Manager has a repository of assigned evaluation functions and will query the appro-
priate evaluation functions to determine the allocation. Evaluation functions can
additionally notify the Interaction Manager that a change has occurred requiring
re-evaluation, performed subject to meta-evaluation approval (to allow for deferral of
re-evaluations).

Since some evaluation functions may be implemented as rules or policies we have
provided a Policy Service [20] component which is capable of reasoning over sets of
policies and is a service available to evaluation functions. Other services, such as

176 T. McBryan and P. Gray

alternative policy services, recommender services or usage history services could also
be made available to evaluation functions to use.

In the rest of this section we present a number of use-case examples that have been
built with this framework to demonstrate the basic suitability of our model for unify-
ing automatic and interactive techniques for configuration. The implementations use a
SHAKE [21] battery-powered multi-sensor pack equipped with accelerometer, gyro-
scope and magnetometer to detect movement traces. The interaction devices we use
for this implementation are currently simulated versions of the actual devices men-
tioned in this section (e.g., TV and phone emulators) and the user interfaces to the
evaluation functions remain primitive.

4.2 Scenario for the Demonstrator Applications

Recall that Shirley has worsening arthritis restricting her mobility. Fred wants to be
informed about Shirley’s activity levels so that he does not worry. Fred is interested
in seeing this data on his mobile phone both at home and away. He does not need to
be notified about the status if he is currently in the room with Shirley since he can
observe for himself. The monitoring data is of interest to external agencies such as
Shirley’s doctor who would like to be kept apprised of changes in Shirley’s condition.

To this end Shirley wears a wireless accelerometer that captures her movement in
real time and delivers it to the MATCH framework as a sensor stream. A task exists
in the framework that interprets the raw sensor data and generates notifications when
there has been little movement or unusual movement patterns.

4.3 Example 1 – Utility Function, Multiple Resolutions

We can imagine that Shirley’s doctor has prepared an evaluation function which se-
lects a “default” hardcoded configuration. This evaluation function is designed to
advise both himself and Fred of Shirley’s condition on an ongoing basis. This default
evaluation function is a utility function designed to maximise benefit by using pre-
selected interaction components.

Utility functions are the simplest type of evaluation function to implement as they
can be completely self-contained and use extremely simple logic to perform their task.

As discussed in Section 0 an evaluation function has as input a set of possibilities
available and returns as an output the set of possibilities to select.

In this case the set of available possibilities may include:

• SMS to the doctor’s phone (perhaps provided for emergency conditions or for
another task)

• HTTP post submission to a shared monitoring screen at the doctors surgery
• A television in the living room
• A loudspeaker which is audible throughout the house
• A monitoring application on Fred’s mobile phone

The utility evaluation function is hardcoded to select the HTTP post submission as
well as the audible loudspeaker and will simply return both of these possibilities
which are both started, discarding all other possibilities.

 A Model-Based Approach to Supporting Configuration in Ubiquitous Systems 177

4.4 Example 2 – Manual Configuration

Since the previous approach was entirely hardcoded it does not specifically address
Fred and Shirley’s needs for the monitoring application; it does not deliver the re-
quired information to Fred’s phone and the frequent loudspeaker announcements are
annoying to Shirley and difficult to hear for Fred.

To resolve this, Fred and Shirley decide to manually specify the devices to be used.
To implement a manual choice in the form of an evaluation it is only necessary to
create an approval style evaluation function that knows the user’s choice and only
approves the appropriate possibility.

In this scenario Shirley has created a connection via the HTTP based surgery moni-
tor and manually adds and removes connections to Fred’s phone and to the television
in the living room depending on whether or not Fred is home.

4.5 Example 3 – Simple Preferences

Eventually, despite the additional control that manual configuration provides, Shirley
tires of manually changing the device between Fred’s phone and the television and
decides that what is actually required is to use the preferences evaluation function.

Fred selects a set of preferences (Phone > TV > Loudspeaker) and changes the
monitoring task to use the preferences evaluation function with his set of preferences.

The evaluation function will take the set of available possibilities and return a sin-
gle possibility of the highest preference, i.e. if the phone is available then the phone
possibility will be used, otherwise the television and finally the loudspeaker.

Since the system only considers available possibilities Fred starts turning his phone
off when he’s in the house so that it is marked as unavailable and cannot be selected.
This causes his second preference, the television, to be used.

4.6 Example 4 – Combining Evaluation Functions

Previously the preferences were configured only for Fred’s usage and ignored the
needs of the doctor who needed to monitor Shirley’s condition over a period of time.

Thus it is necessary to combine the doctor’s needs with Fred’s preferences. To do
this, the simplest approach is to have two evaluation functions – one for the doctor’s
needs and one for Fred’s. One evaluation function selects the doctor’s surgery moni-
toring application, if available, and otherwise the SMS function, the other duplicates
the preferences in the previous example.

These can both be implemented as two instances of the same basic preferences
evaluation function but with different sets of preferences.

In order to combine these evaluation functions we can use a meta-evaluation func-
tion (election system) to the task which operates over a selection of sub-evaluation
functions. When the meta-function is queried it simply queries each sub-function in
turn and returns as its result the union set of the results from each sub-function. In
this case it would return the set of the result of the doctor’s preferences (the surgery
monitoring application) and Fred’s preferences (the phone or television depending on
availability).

178 T. McBryan and P. Gray

We could extend this to add an evaluation function for Shirley which may provide
an “anti preference”, i.e. devices she doesn’t ever want used which may have higher
precedence than the meta-evaluation function discussed here.

Other tactics of combining evaluation functions could be formed by providing al-
ternate meta-evaluation functions (i.e. the intersection or union of the results of multi-
ple approval functions).

4.7 Example 5 – Context Sensitivity

In the previous two examples; Fred has had to turn his phone off when he enters the
house to cause the preference based system to switch to using the television. This
situation is not ideal since Fred may receive phone calls while his phone is turned off.

To address this problem, it is decided that Fred’s preference evaluation function
should be replaced with a context sensitive evaluation function to control the configu-
ration based on Fred’s behaviour. Here the appropriate contextually sensitive evalua-
tion function would detect if Fred is at home or not and return the appropriate possi-
bility. Other contextual evaluation functions which might be used by Fred and
Shirley are monitoring of light levels to determine which rooms are in use to only use
interfaces available in those rooms, or monitoring ambient sound levels to adjust the
volume of audio alerts or to determine if they are appropriate at all.

This can be extended further by simply turning the context sensitive function into a
switch between two sub-evaluation functions – your preferences in one situation vs.
your preferences in another situation. This can be further extended to create logic
trees of evaluation functions which control the sub-evaluation functions to be used.

It is also possible that the actual data being monitored could be contextual, such
that if Shirley has not moved for an extended period of time then the choice of inter-
action technique might change (i.e. to send an SMS to the doctors phone) rather than
using the passive monitoring provided by the surgery.

5 Conclusions

In this paper we have presented a model-based approach to supporting configuration.
This approach allows for the combination of multiple techniques ranging from fully
automatic to fully interactive approaches for configuration and including various
intermediate combinations.

The approach described here expressed composition and function without using a
specific specification or description language but instead supports the combination of
multiple disparate languages (for example; Java, ACCENT [22], MATLAB) within a
single configuration if so desired. This approach is intended to be realised as a tool-
supported configuration system where evaluation functions can be combined together
and specified by the stakeholders. However, it may prove useful to express configura-
tions in the model via a custom language.

Our initial examples, described above, only involve the selection and configuration
of output components. We are now extending our use cases to support the selection,
combination and configuration of components involving both input and output. We
are working on more sophisticated interactive meta-evaluation functions, including

 A Model-Based Approach to Supporting Configuration in Ubiquitous Systems 179

their user interfaces, intended for typical users of a home care system. We are also
working on applying techniques from voting systems to the model by viewing evalua-
tion functions as voters in an election and meta-evaluation functions as the election
systems themselves.

In the longer term, we believe that this approach is more broadly applicable than
we have described here, including the selection and configuration of application tasks
and sensors and involving multiple stakeholders with conflicting requirements. This
will be the focus of further research.

Acknowledgements

This research was carried out within the MATCH (Mobilising Advanced Technolo-
gies for Care at Home) Project funded by Scottish Funding Council (grant HR04016).
We wish to thank our MATCH colleagues for their contribution to the ideas presented
here and for their work in developing the MATCH software framework.

References

1. Dey, A.K., Mankoff, J.: Designing mediation for context-aware applications. ACM Trans-
actions on Computer-Human Interaction (TOCHI) 12(1), 53–80 (2005)

2. Oviatt, S.: Ten myths of multimodal interaction. Communications of the ACM 42(11), 74–
81 (1999)

3. Thevenin, D., Coutaz, J.: Plasticity of User Interfaces: Framework and Research Agenda.
In: Proceedings of Interact, vol. 99, pp. 110–117 (1999)

4. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying Distributed Software Architec-
tures. In: Proceedings of the 5th European Software Engineering Conference, pp. 137–153
(1995)

5. Humble, J., Crabtree, A., Hemmings, T., Åkesson, K.P., Koleva, B., Rodden, T., Hansson,
P.: Playing with the Bits-User-configuration of Ubiquitous Domestic Environments. In:
Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, pp. 12–
15. Springer, Heidelberg (2003)

6. Edwards, W.K., Newman, M.W., Sedivy, J., Smith, T., Izadi, S.: Challenge: Recombinant
Computing and the Speakeasy Approach. In: Proc. MOBICOM 2002 - The 8th Annual In-
ternational Conference on Mobile Computing, pp. 279–286 (2002)

7. Schmidt, A., Beigl, M., Gellersen, H.W.: There is more to context than location. Com-
puters & Graphics 23(6), 893–901 (1999)

8. Sousa, J.P., Garlan, D.: Improving User-Awareness by Factoring it Out of Applications.
In: Proc. System Support for Ubiquitous Computing Workshop (UbiSys) (2003)

9. Gajos, K., Christianson, D., Hoffmann, R., Shaked, T., Henning, K., Long, J.J., Weld,
D.S.: Fast and robust interface generation for ubiquitous applications. In: Beigl, M., Intille,
S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660. Springer, Heidel-
berg (2005)

10. Connelly, K., Khalil, A.: Towards Automatic Device Configuration in Smart Environ-
ments. In: Proceedings of UbiSys Workshop (2003)

11. W3C Ubiquitous Web Applications, Content Selection for Device Independence (DISe-
lect) 1.0, http://www.w3.org/TR/2007/CR-cselection-20070725/

180 T. McBryan and P. Gray

12. Calvary, G., Coutaz, J., Daassi, O., Balme, L., Demeure, A.: Towards a new generation of
widgets for supporting software plasticity: the comet. In: Preproceedings of EHCI/DSV-
IS, vol. 4, pp. 41–60 (2004)

13. Bell, M., Hall, M., Chalmers, M., Gray, P., Brown, B.: Domino: Exploring Mobile Col-
laborative Software Adaptation. LNCS. Springer, Heidelberg (2006)

14. Jaquero, V.L., Vanderdonckt, J., Montero, F., Gonzalez, P.: Towards an Extended Model
of User Interface Adaptation: the ISATINE framework. In: Proc. Engineering Interactive
Systems 2007 (2007)

15. Myers, B.A., Weitzman, D., Ko, A.J., Chau, D.H.: Answering Why and Why Not Ques-
tions in User Interfaces. In: Proc. ACM Conference on Human Factors in Computing Sys-
tems, Montreal, Canada, pp. 397–406 (2006)

16. Dourish, P.: Developing a Reflective Model of Collaborative Systems. ACM Transactions
on Computer-Human Interaction 2(1), 40–63 (1995)

17. MacLean, A., Carter, K., Lovstrand, L., Moran, T.: User-tailorable systems: pressing the
issues with buttons. In: Proceedings of the SIGCHI conference on Human factors in com-
puting systems: Empowering people, pp. 175–182 (1990)

18. Fickas, S.: Clinical Requirements Engineering. In: ICSE 2005, pp. 140–147. ACM, New
York (2005)

19. Gray, P., McBryan, T., Martin, C., Gil, N., Wolters, M., Mayo, N., Turner, K., Docherty,
L., Wang, F., Kolberg, M.: A Scalable Home Care System Infrastructure Supporting Do-
miciliary Care. University of Stirling, Technical Report CSM-173 (2007)

20. Wang, F., Docherty, L.S., Turner, K.J., Kolberg, M., Magill, E.H.: Services and Policies
for Care at Home. In: Proc. International Conference on Pervasive Computing Technolo-
gies for Healthcare, pp. 7.1-7.10 (2006)

21. Williamson, J., Murray-Smith, R., Hughes, S.: Shoogle: excitatory multimodal interaction
on mobile devices. In: Proc. SIGCHI conference on Human factors in computing systems
(2007)

22. Turner, K.J., Reiff-Marganiec, S., Blair, L., Pang, J., Gray, T., Perry, P., Ireland, J.: Policy
Support for Call Control. Computer Standards and Interfaces 28(6), 635–649 (2006)

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 181 – 193, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Exploiting Web Services and Model-Based User
Interfaces for Multi-device Access to Home Applications

Giulio Mori, Fabio Paternò, and Lucio Davide Spano

ISTI-CNR, HIIS Laboratory, Via Moruzzi 1,
56124 Pisa, Italy

{Giulio.Mori, Fabio.Paterno, Lucio.Davide.Spano}@isti.cnr.it

Abstract. This paper presents a method, and the corresponding software archi-
tecture and prototype implementation to generate multi-device user interfaces in
the home domain. The approach is based on Web services and model-based
user interface generation. In particular, it focuses on multi-device interfaces ob-
tained starting with XML descriptions of home Web services, which are then
mapped onto user interface logical descriptions, from which it is possible to
then generate user interfaces adapted to the target devices. During use, the gen-
erated interfaces are able to communicate with the home Web services and can
be dynamically updated to reflect changes in domestic appliances available and
the associated state.

Keywords: User Interface Generation, Web Services, Logical Interface De-
scriptions, Home Applications.

1 Introduction

Our work takes into account current technological trends and research results and
aims to provide integrated solutions able to allow users to flexibly access functional-
ity important for their daily life. In particular, the approach is based on three main
aspects:

• In recent years, model-based user interface generation has stimulated increas-
ing interest because it can support solutions for multi-device environments ex-
ploiting XML logical descriptions and associated transformations for the target
devices and implementation languages.

• Web services are increasingly used to support remote access to application
functionalities, in particular in ubiquitous environments. They are described
using WSDL (Web Services Description Language) files, which are XML-
based descriptions as well.

• The home is becoming more and more populated by intelligent devices with
the ability to communicate information, thus allowing remote access to their
state in order to query or modify it.

The goal of our solution is to allow users to access their domestic appliances from
anywhere using any available interactive device. This is obtained by supporting

182 G. Mori, F. Paternò, and L.D. Spano

automatic generation of user interfaces for home applications in such a way as to be
able to handle dynamic configurations of home appliances. The resulting environment
allows users to dynamically access their home applications involving access to domo-
tic devices such as lights, alarm sensors, media players and so on. We aim to provide
dynamic access through multiple interactive devices to multiple functionalities avail-
able through Web services (see Figure 1). Regarding the home appliances (such as
lights, shutters, air conditioning, video recorders), they can communicate using vari-
ous types of network protocols. We assume the existence of an intermediate middle-
ware supporting interoperability among such home devices (for example, we have
considered the open source environment DomoNet [9]), which provides access to the
home devices through Web Services independently of the communications protocols.
Thus, the devices can use their original protocol to communicate (examples are UPnP,
Konnex, BTicino …) but then such communication goes through a home server,
which makes their services accessible to any client through a unifying format. The
goal is also to obtain an environment able to support access even when changes in the
available home devices occur.

Fig. 1. The Overall Approach

The paper is structured as follows: we first discuss related work, next we provide
some background information useful to make the paper self-contained, then we pre-
sent the overall approach proposed, and show an example application. Lastly, some
conclusions are drawn along with indications for future work.

 Exploiting Web Services and Model-Based User Interfaces for Multi-device Access 183

2 Related Work

The increasing availability of interaction device types has raised interest in techniques
able to support adaptation of the user interface. In Web applications, the adaptation
process can take place in the application server, or in the proxy server or in the client
device. Digestor [2] and Power Browser [3] have been solutions that use proxy-based
transformations (as in our case) in order to modify the content and structure of Web
pages for mobile use. However, they do not use logical descriptions of user interfaces
in order to reason about page re-design or apply analysis of the sustainable costs of
the target device, as happens in our case. Supple [6] is a tool able to support adapta-
tion by applying intelligent optimization techniques.

One solution that has raised a good deal of interest is the model-based approach in
which the logical user interface descriptions are usually represented through XML-
based languages (examples are TERESA XML[12], UIML[1], USIXML[7]). In the
CAMELEON project [4] a framework describing the various possible abstraction
levels was refined based on the experience acquired in this area. A number of tools
have been developed aiming to implement such framework (see for example, Multi-
modal TERESA [12], ….).

Such logical descriptions have also been exploited in other environments. For ex-
ample, in Damask [8] they are used along with a sketch editor and the possibility to
exploit a number of patterns. PUC [10] is another interesting environment, which uses
some logical description but focuses on the automatic generation of consistent user
interfaces for domestic appliances (such as printers, copy machines, …). In PUC,
logical descriptions of the device to control are downloaded by a mobile device in
which the corresponding user interface is automatically generated.

In general, little attention has been paid to the use of user interface model-based
approaches for the generation of applications based on Web services. Some work has
been dedicated to the generation of user interfaces for Web services [13] [14] but
without exploiting model-based approaches to user interfaces. In [15] there is a pro-
posal to extend service descriptions with user interface information. For this purpose
the WSDL description is converted to OWL-S format, which is combined with a
hierarchical task model and a layout model. We follow a different approach, which
aims to support the access to the WSDL without requiring their substantial modifica-
tions in order to generate the corresponding user interfaces, still exploiting logical
interface descriptions. We aim to address this issue, with particular attention to home
applications, which are raising increasing interest given the increasing availability of
automatic domestic appliances.

3 Background

In this work we want to investigate solutions for the combined use of Web services
and model-based user interfaces. Regarding the description of the logical user inter-
faces, we have extended TERESA XML [12]. Since this language has already been
considered in other papers, herein we just recall the basic concepts in order to make
this paper self-contained, highlight the more relevant parts, and indicate its evolution
in order to better address the issues raised by this work.

184 G. Mori, F. Paternò, and L.D. Spano

TERESA XML is a set of languages able to describe the various abstraction levels
for user interfaces. We consider the levels highlighted by the CAMELEON reference
framework [4], which is based on the experiences of the model-based user interface
community. There are two platform-independent languages, which means that they
are able to describe the relevant concepts for any type of device. They are the lan-
guage for the task model (which is the ConcurTaskTrees notation [11]) and the lan-
guage for the abstract user interface description. Then, there is a set of platform-
dependent languages, one for the concrete description of each platform considered.
We mean for platform a set of devices and associated software environments that
share similar interaction capabilities (e.g. form-based graphical desktop, vocal, …).
Such concrete languages are implementation-language independent but depend on the
interaction modalities associated with the considered platform (examples are: the
desktop direct manipulation graphical platform, the form-based graphical mobile
platform, the vocal platform, …). Each language part of TERESA XML is associated
with an XML Schema. We initially used DTDs for this purpose, but their expressive-
ness is limited.

The abstract description is composed of presentations and connections indicating
how to move from one presentation to another. The presentations can include compo-
sition operators and interactors. The composition operators are declarative ways to
indicate how to put together groups of interactors, in particularly in order to achieve
some communication goal, such as highlighting that a group of elements are semanti-
cally related to each other (grouping) or that some elements somehow control another
group of elements (relation). Associated with groups of elements it is possible to
specify the level of importance of the composing elements or whether there is any
specific ordering among them. The interactors are declarative descriptions of ways to
present information or interaction objects.

All the concrete description languages share the structure defined by the abstract
language and refine it by adding elements indicating how the abstract elements can be
better defined for the target platform. Thus, the concrete elements are mainly defined
by adding attributes to the abstract elements, while still remaining independent of the
implementation language. For example the form-based desktop description language
can be used to describe user interfaces implemented in XHTML or Windows Forms
or Java Swing.

 Our work on the home case study has been useful to identify some of the abstrac-
tions missing in previous versions of TERESA XML, such as alarms, the possibility
to enter numerical values within a range, the possibility to have activators associated
with multiple functionality selectable by the user. One important modification has
been the introduction of dynamic connections, which means the possibility of moving
to a presentation dynamically, in such a way that the actual target presentation de-
pends on some condition tested at run-time.

4 The Proposed Approach

In order to reach our goals, the proposed environment is based on a user interface
generator (UIG) server, whose architecture is represented in Figure 2, which receives
access requests from the user.

 Exploiting Web Services and Model-Based User Interfaces for Multi-device Access 185

Fig. 2. The Architecture for Platform-dependent User Interface Generation

The first request is the selection of the environment that the user prefers to use in
terms of type of device (mobile, desktop, vocal, …) and implementation language
preferred (XHTML, Java, C#, …).

At the time of the request, the UIG server accesses the home server, which sup-
ports access to the home appliances. Such home server is accessible through Web
services, which export the list of possible methods and their parameters through an

186 G. Mori, F. Paternò, and L.D. Spano

XML-based WSDL file. In particular, the Web services provide information regard-
ing what home appliances are available, their location in the home, and their current
state, as well as supporting state change requests. The UIG server contains a module,
which is able to take the information from the Web services of the home server, and
then pass it to the module in charge of building an abstract description of a user inter-
face able to support access to the home devices. The information passed includes the
list of methods supported by the functionality of the domestic appliances and the type
of parameters they can accept.

The abstract description is a platform-independent description, which is then re-
fined into a concrete, platform-dependent description. In order to complete the con-
crete description, the tool also uses some predefined presentation patterns for the
considered application domain (home), which include some relevant content (icons,
texts, …). At this point the server is ready for the generation of the final implementa-
tion, which is then uploaded to the current user device.

During the user session, the user interface software accesses the home Web ser-
vices. For this purpose, if the user interface is implemented for a Web environments
then a set of Java servlets are generated along with the user interface implementation,
which become part of the server manager. They will be the elements supporting
communication in both directions between the user interface and the home services.
Thus, the user interface generated will include indications on what servlet to activate
in case of generation of requests to modify the state of any home device, as well as on
the servlets that can dynamically update the user interface content in order to provide
dynamic information regarding the state of the domestic appliances.

5 Mapping Home Web Services onto Abstract User Interface
 Descriptions

In the module for mapping the Web services onto the abstract user interface descrip-
tion, we assume that the application refers to a home, which is composed of various
rooms. In each room there is a number of devices, which belong to some device cate-
gory (such as DimmerLightBulb, thermostat, media player, …). For each device cate-
gory, the Web service provides a list of associated methods, which allow users either
to access their state or to modify it. If we analyze the devices’ functionality in detail,
we can note that each device is associated with a set of functionalities that are inde-
pendent of the specific model of the device, one parameter is the device id that is used
to distinguish among various devices in the same category. We now discuss a subset
of home devices considered in order to illustrate how our approach works. Other
devices considered include media players able to support remote access to various
types of multimedia files.

The LightBulb device is associated with the methods:
- turnOnLight: has no return parameters, it is a write-only method with a Boo-

lean as second parameter. Thus, it is used to send two possible values (on and off),
each of which can be associated with a specific button.

- isLightOn: has a Boolean return parameter, thus it is a read-only method. The
representation of the value can be given by an output-only object

 Exploiting Web Services and Model-Based User Interfaces for Multi-device Access 187

DimmerLightBulb is a device subclass of lightBulb, which adds the possibility to
control the brightness value. Its methods are:

- setDimmerValue: has no return parameter, it is a write-only method that ac-
cepts as input as second parameter a short integer indicating the value that is set for
the dimmer. Thus, the corresponding additional interaction element is a numeri-
cal_in_range_edit object, whose parameters are the min and max possible values and
a Boolean indicating whether the range is continuous.

- getDimmerValue: has a return value indicating the state of the dimmer,
which can be represented through an output-only object.

- getDimmerRange: is useful to know the limits of the possible values, which
can be represented through two output-only objects.

The thermostat is associated with the methods:
- setCurrentTemperature: has no return parameter, thus it is a write-only

method, and the second parameter is a short integer, which can be edited through a
numerical_edit object.

- currentTemperature: has a short integer as return parameter, thus it is a read-
only method, which can be associated with an output-only text object.

 - getcurrentTemperatureRange: is useful to know the range of the possible
values independent of the adopted solution for the control.

Sensor represents any type of sensor that can generate an alarm, and it has only one
method:

- getSensorStatus: has a Boolean as a return parameter, thus it is a read-only
method. When the Boolean is set to true then an alarm object is activated.

Alarm represents an alarm device and has the methods:
- setAlarmState: has no return parameters, thus it is a write method with the

second parameter as integer. Usually three values are used ON/Off and an intermedi-
ate value.

- getAlarmState: is a read method, whose return parameter is an integer. The
representations of such values can be (Total – Partial - Off) .

In the application of these mappings, we could obtain cases in which an interactive
element to set the state of a device is separated from the output element that shows the
device state. However, in some cases, for example a mobile user interface in which
screen space is limited, it may be useful to have a single interactive element able to
cover both aspects (possibility of changing the state and showing actual state). For
example, a dimmer can have a slide bar control for both purposes: showing the cur-
rent value, which can be received from the home device, but also allowing the user to
change it sending the new value as result of the interaction. In order to identify such
cases, we have developed a heuristic indicating that when in the WSDL we find two
methods with complementary structures (such as set xxx value and get xxx value)
associated to one device, then they are mapped onto one element able to support both
methods instead of two separate interface elements. These mappings are exploited in
the building of the abstract user interface.

In this approach, the goal is to obtain an abstract description of a user interface,
which when it will be generated it will be able to directly communicate with the Web
services. Through this communication, some parts of the user interface will be

188 G. Mori, F. Paternò, and L.D. Spano

dynamically filled in (in terms of data values), such as the list of available home de-
vices, eventually filtered by type. Below we show an excerpt of the WSDL consid-
ered. At the beginning the types of home devices are defined. All of them are subclass
of DomoDevice, which has the common basic attributes (such as room, name, …).

In the following WSDL excerpt, there is the Light Bulb, which has the methods
TurnOnLight and IsLightOn; we can also note that the TurnOnLight has two parame-
ters: the device (LightBulb) and a Boolean:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions ... >
 <wsdl:types>
 ...
 <s:complexType name="LightBulb">
 <s:complexContent mixed="false">
 <s:extension base="tns:Lighting"/>
 </s:complexContent>
 </s:complexType>
 ...
 <s:element name="TurnOnLight">
 <s:complexType>
 <s:sequence>

<s:elementminOccurs="0" maxOccurs="1" name="bulb" type="tns:LightBulb"/>
<s:element minOccurs="1" maxOccurs="1" name="on" type="s:boolean"/>

 </s:sequence>
 </s:complexType>
 </s:element>
 …….
 <s:element name="IsLightOn">
 <s:complexType>
 <s:sequence>

<s:elementminOccurs="0" maxOccurs="1" name="bulb" type="tns:LightBulb"/>
 </s:sequence>
 </s:complexType>
 </s:element>
 ...
 </wsdl:types>
 ...
 </wsdl:portType>
 ...
</wsdl:definitions>

6 From the Abstract Description to the Concrete Descriptions and
 the Implementations

The abstract structure of the resulting user interface is structured as a vertical group-
ing of three grouping elements (see Figure 3): one dedicated to the header (containing
a logo/title), one to the main area, and one to the footer (containing some controls that
allow dynamic filtering of the device list, for example according to the type of room
or to the type of device). The corresponding user interface is in Figure 4: in the footer
grouping there are the buttons associated with the type of rooms available in the home
and general controls, such as the Disconnect button. In the main area there are two
grouping: one dedicated to the map zone (which provides a graphical representation

 Exploiting Web Services and Model-Based User Interfaces for Multi-device Access 189

Header

Devices
List

Map Zone

Device
Control

Footer

Fig. 3. The structure of the desktop interface

of the rooms available), and one to the device area, which is a vertical grouping of a
grouping dedicated to the available devices’ list and one to the controls for the cur-
rently selected device.

Below there is the excerpt of the abstract description that indicates how this pres-
entation is structured through the composition operators:

<?xml version="1.0"?>
<!DOCTYPE interface PUBLIC … >

<interface>
 <presentation name="Main_Presentation">
 <interactor_composition>
 <operator name="grouping_Application" />
 <interactor_composition>
 <operator name="grouping_Header" />
 …
 </interactor_composition>
 <interactor_composition>
 <operator name="grouping_Central_Zone" />

<operator name="grouping_Map_ZONE" />
…
</interactor_composition>
<interactor_composition>
<operator name="grouping_Device_Area" />
<interactor_composition>
<operator name="grouping_Devices_List" />
…
</interactor_composition>
<interactor_composition>
<operator name="grouping_Devices_Control" />
…
</interactor_composition>

</interactor_composition>
 <interactor_composition>
 <operator name="grouping_Footer" />
 …
 </interactor_composition>
</interactor_composition>
 </presentation>
</interface>

190 G. Mori, F. Paternò, and L.D. Spano

Fig. 4. The desktop interface

More in detail, each area contains specific interactors and composition operators. It
is important to note that in the user interface there are some parts, which are dynamic
(in particular the Device Control part). This means that, depending on the type of
device dynamically selected at run time, different controls will be shown in this part
of the user interface in order to operate with them. This has been obtained by extend-
ing the TERESA XML language in such a way to include dynamic connections,
which means connections in which the target presentation changes depending on a
value that is identified at run-time. Thus, through the analysis of the WSDL we are
able to identify all the possible target presentations and the associated structure. In
addition, we are also able to identify the values (in this case the device type value)
which are associated with each of them.

In particular, while in the previous version of TERESA XML a connection was de-
fined through the interactor triggering it and the corresponding target presentation:

interactor ----------- connection ---------------> target presentation

Now, we also associate the interactor with a set of possible values, which are

known through an analysis of the WSDL and the connection can have multiple target
presentations:

Interactor (values) ----------- connection ---------------> multiple target presentations

the actual value considered is generated at run-time depending on the user interaction
with the interactor and determines which target presentation to activate. Thus, in our
case at run-time, depending on the actual device selected by the user, different pages

 Exploiting Web Services and Model-Based User Interfaces for Multi-device Access 191

with different controls will be shown. This was also obtained through another small
extension in the TERESA XML language, for which the activator element can be
associated with multiple functionality rather than only with a single one, as it hap-
pened in the previous version. This feature is used when the user selects a device from
the available device list and depending on the selection a different Web service func-
tionality will be activated. Below we can see the abstract user interface description of
the Device Control in the case of a Dimmer Light Bulb type of device:

 <interactor_composition>
 <operator name="grouping_Basic_Device_Control" />
 <interactor id="TurnOn_Button">
 <interaction category="interaction">
 <control type="control">
 <activator object="activator" />
 </control></interaction></interactor>
 <interactor id="TurnOff_Button">
 <interaction category="interaction">
 <control type="control">
 <activator object="activator" />
 </control></interaction></interactor>
 </interactor_composition>
 <interactor_composition>
 <operator name="grouping_Advanced_Control" />
 <interactor id="Decrease_Level_Button">
 <interaction category="interaction">
 <control type="control">
 <activator object="activator" />
 </control></interaction></interactor>
 <interactor id="Level_Light">
 <interaction category="interaction">
 <edit type="edit">
 <text_edit object="alphanumeric" />
 </edit></interaction></interactor>
 <interactor id="Increase_Level_Button">
 <interaction category="interaction">
 <control type="control">
 <activator object="activator" />
 </control></interaction></interactor>
 </interactor_composition>
 </interactor_composition>

We can note that the grouping_Basic_Device_Control represents the set of

basic controls (associated with a Light Bulb), while the grouping_Advanced_
Control represents the additional controls (associated with a Dimmer Light Bulb),
which provide the additional possibility of choosing the brightness level. Figure 4 shows
the resulting user interface for a desktop platform.

The creation of the mobile version is obtained by applying a cost-based semantic
redesign transformation in the process of building the concrete description. The start-
ing point is still the same abstract user interfaces. The first version of the concrete
description created preserves the same structure but is associated with content for the
mobile device in this case. This means smaller icons and, generally, more simplified
representations. Then, the concrete description is transformed to better match the
currently available resources. Thus, it takes information regarding the screen size of

192 G. Mori, F. Paternò, and L.D. Spano

the current device and depending on this it splits the original presentations into pres-
entations more suitable for the current target device. The splitting is based on the
logical structure of the user interface. This means that the resulting cost of the com-
posed elements is calculated and if it is too expensive for the device then a new pres-
entation is allocated for this set of elements and the connections to support navigation
with it are automatically generated. In our example, simplified versions of the header
and footer are generated. Then, the grouping associated with the room list has a cost
sufficient to fill in a mobile presentation. The grouping associated with the list of
available devices, which is dynamically filled in at run-time is associated with another
specific mobile presentation. Also the grouping associated with the device controls
has a cost sufficient to fill in a presentation. Lastly, the corresponding user interfaces
are generated, Figure 5 shows three presentations for the mobile version.

Fig. 5. The interface for the mobile device

7 Conclusions and Future Work

We have reported on a work that aims to bridge the use of Web services and model-
based user interface generation for home applications. We have discussed the method
developed for this purpose and the corresponding software architecture and prototype
implementation. In the paper we have also discussed how TERESA XML has been
extended in order to support a more flexible set of interaction techniques and dynamic
pages, whose interactive elements depends on information-generated dynamically at
run-time in the communication between the user and the home Web services.

Future work will be dedicated to testing the usability of the automatically gener-
ated user interfaces for the various interactive devices, considering the use of ontolo-
gies for richer semantic descriptions and analysis, and the application to other case
studies (such as remote elderly monitoring and assistance).

 Exploiting Web Services and Model-Based User Interfaces for Multi-device Access 193

References

1. Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S., Shuster, J.: UIML: An Appli-
ance-Independent XML User Interface Language. In: Proceedings of the 8th WWW con-
ference (1999)

2. Bickmore, T., Girgensohn, A., Sullivan, J.: Web-page Filtering and Re-Authoring for Mo-
bile Users. The Computer Journal 42(6), 534–546 (1999)

3. Buyukkokten, O., Kaljuvee, O., Garcia-Molina, H., et al.: Efficient Web Browsing on
Handheld Devices Using Page and Form Summarization. ATOIS 20(1), 82–115 (2002)

4. Calvary, G., Coutaz, J., Thevenin, D., Bouillon, L., Florins, M., Limbourg, Q., Souchon,
N., Vanderdonckt, J., Marucci, L., Paternò, F., Santoro, C.: The CAMELEON Reference
Framework, Deliverable D1.1 (2002)

5. Florins, M., Vanderdonckt, J.: Graceful degradation of user interfaces as a design method
for multiplatform systems. Intelligent User Interfaces, 140-147 (2004)

6. Gajos, K., Christianson, D., Hoffmann, R., Shaked, T., Henning, K., Long, J.J., Weld,
D.S.: Fast and robust interface generation for ubiquitous applications. In: Beigl, M., Intille,
S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 37–55.
Springer, Heidelberg (2005)

7. Limbourg, Q., Vanderdonckt, J.: UsiXML: A User Interface Description Language Sup-
porting Multiple Levels of Independence. In: Engineering Advanced Web Applications.
Rinton Press, Paramus (2004)

8. Lin, J., Landay, J.: Employing Patterns and Layers for Early-Stage Design and Prototyping
of Cross-Device User Interfaces. In: Proceedings, C.H.I. (ed.) Proceedings CHI 2008,
Floremce (April 2008)

9. Miori, V., Tarrini, L., Manca, M., Tolomei, G.: - An open standard solution for domotic
interoperability. IEEE Transactions on Consumer Electronics 52(1), 97–103 (2006)

10. Nichols, J., Myers, B.A., Rothrock, B.: UNIFORM: Automatically Generating Consistent
Remote Control User Interfaces. In: CHI 2006, pp. 611–620. ACM Press, New York
(2006)

11. Paternò, F.: Model-based Design and Evaluation of Interactive Applications. Springer,
Heidelberg (1999)

12. Paternò, F., Santoro, C., Mantyjarvi, J., Mori, G., Sansone, S.: Authoring Pervasive Mul-
tiModal User Interfaces. International Journal of Web Engineering and Technology (2)
(2008)

13. Song, K., Lee, K.-H.: An automated generation of xforms interfaces for web services. In:
Proceedings of the International Conference on Web Services, pp. 856–863 (2007)

14. Spillner, J., Braun, I., Schill, A.: Flexible Human Service Interfaces. In: Proceedings of the
9th International Conference on Enterprise Information Systems, pp. 79–85 (2007)

15. Vermeulen, J., Vandriessche, Y., Clerckx, T., Luyten, K., Coninx, K.: Service-interaction
Descriptions: Augmenting Services with User Interface Models. In: Proceedings Engineer-
ing Interactive Systems 2007. Springer, Heidelberg (2007)

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 194 – 207, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Resources for Situated Actions

Gavin Doherty1, Jose Campos2, and Michael Harrison3

1 Trinity College Dublin, Dublin 2, Ireland
2 University of Minho, Portugal

3 Newcastle University, UK
Gavin.Doherty@cs.tcd.ie, Michael.Harrison@ncl.ac.uk,

jose.campos@di.umhinho.pt

Abstract. In recent years, advances in software tools have made it easier to ana-
lyze interactive system specifications, and the range of their possible behaviors.
However, the effort involved in producing the specifications of the system is
still substantial, and a difficulty exists regarding the specification of plausible
behaviors on the part of the user. Recent trends in technology towards more
mobile and distributed systems further exacerbates the issue, as contextual fac-
tors come in to play, and less structured, more opportunistic behavior on the
part of the user makes purely task-based analysis difficult. In this paper we con-
sider a resourced action approach to specification and analysis. In pursuing this
approach we have two aims - firstly, to facilitate a resource-based analysis of
user activity, allowing resources to be distributed across a number of artifacts,
and secondly to consider within the analysis a wider range of plausible and op-
portunistic user behaviors without a heavy specification overhead, or requiring
commitment to detailed user models.

1 Introduction

It is typical in human computer interaction when specifying the system to describe the
tasks that are the proposed basis for the work to be supported. A process of task
analysis elicits the tasks that people carry out with the existing system used as a basis
for designing the tasks for which the new design is intended. The problem with this
approach is that the way the user actually uses the proposed system in practice may
differ from what the designer expects.

In order to reason about the usability of the system we must introduce some notion
of plausible user behavior. However, if we introduce overly restrictive or unrealistic
assumptions about user behavior, the value and validity of our analysis can be ques-
tioned. For example, consider an analysis of whether the user is likely to put the pro-
posed system into an unsafe or undesirable state. We need to introduce assumptions
about the behavior of the user because exhaustively checking the system model alone
will throw up an unlimited number of spurious problems. Exhaustive analysis corre-
sponds to the assumption that the user will interact with the system (e.g. push buttons)
at random. Hence, in looking at the effect of a sequence of user actions on the system,
we do not want to consider traces which the user is unlikely to carry out (irrespective
of whether they are “good” or “bad” actions).

If we combine the system model with a task model, we assume that the user will
follow the pattern of interaction defined by the structure of the task. While this may

 Resources for Situated Actions 195

still correspond to a large number of possible behaviors, the resulting set can still be
criticized as being too prescriptive. This approach can still ignore many highly plausi-
ble behaviors and will be unsuitable for many goal directed situations for which the
tasks are not well defined. Furthermore, in the real-world, users often behave oppor-
tunistically according to the situation they are in, and the resources and actions avail-
able to them in that situation.

An alternative approach is to start the other way round. Here the resources that are
expected to help the user: to achieve goals; to make choices between actions; to carry
out specific activities [10] are considered explicitly. Resources are codified in terms
of: status or state; action possibility; action effect information; the plans that are ap-
propriate to achieve goals and goal information. These resources act as constraints on
the user and under certain assumptions will create the circumstances in which the
goals are achieved. The model makes explicit how these resources are organized and
defined in the interface. This can be used in analysis to explore the possible paths that
are permitted by the resource organization. In [3] we looked at the resourcing of ac-
tions within a task structure; in this paper we develop the analysis a step further, and
examine the feasibility of a purely action-based analysis in which we do not commit
to a particular task structure, similar to that described in [10] but in this case applied
to a formal model. We explore an approach to modeling and analysis based on re-
source constraints in two ways. We first consider the dyadic relationship between the
user and the device. The user has goals and the device supports them in achieving
these goals. We explore this relationship and the constraints that are imposed by re-
sources. The device is in practice embedded within a context. This context may addi-
tionally constrain the user. Hence the second part of the paper explores the user em-
bedded within a smart environment. We explore a control system where the operator
is only able to control aspects of the system when they are within a certain proximity
of the system or if they have saved the control for future use. We explore different
assumptions about the resources provided to users within this environment, and the
potential effects on user strategies and behaviour.

We propose that by looking at the resourcing of individual actions, we can selec-
tively introduce constraints on user behaviors which need not be as restrictive as a
task model. We propose that this is also a natural and useful vehicle for analysis of a
design, and particularly suited to recent trends towards more mobile, distributed and
heterogeneous systems. An added advantage is that we can take advantage of tool
support for exploring the consequences of these assumptions.

2 The Resourced Action Approach

Individual user actions are taken as the basic units of analysis. The resourcing of each
of these actions is specified independently. The focus of analysis then becomes
whether each individual user action is appropriately resourced, or whether appropriate
combinations of resourced actions will lead to the achievement of user goals. The
starting point is that for an action to be afforded in a particular context, certain infor-
mation resources must be present in that context. For example, if a mobile phone (the
device) has an action to save a draft text message, we could specify that (1) action
availability is resourced (the “save” option is currently on the screen), (2) the action

196 G. Doherty, J. Campos, and M. Harrison

is enabled (the message memory is not full), (3) action-effect information is available
(is the label “save to drafts” or just “save”?), and (4) required information about the
current state is available (have I saved it already?). Regardless of how I ended up
editing a text message (did I reply to another message, is it a group text?), or higher
level user tasks and goals (which may be varied), the basic resourcing for this action
remains much the same.

The specification of the system is thus structured as a set of actions, which affect
the state of the system, accompanied by an appropriate model of system state. Various
forms of interactive system specification (including interactor models) could provide
a means to build this specification, and indeed Modal Action Logic [4] focuses on the
actions supported in an interface, but the additional structuring provided by interactor
models is not a necessary part of the approach. A difference from other approaches to
interactive system analysis is the addition of resourcing requirements to accompany
each action. We can consider more sequentially constrained interactions if needed,
whether this is through the structure of the system, or due to likely plan-based behav-
ior by the end user. Even if we take the view that actions are situated [9], we can still
allow for the possibility by considering plans themselves as resources [10]. It is im-
portant to note that this approach is not just a vehicle for automated analysis of behav-
ior, but also leads us to consider, in a methodical fashion, the resourcing of situated
user actions. The possibility of tool support however, allows us to more easily and
comprehensively identify situations where actions may be inadequately resourced.

The rest of this section considers the steps involved in the analysis. The approach
is comparable with a number of other evaluation techniques. For example cognitive
walkthrough [8] takes a task or scenario and requires the analyst to ask questions
systematically of the interface. The questions have similarities with those that are
used in this paper. The main difference between this work and cognitive walkthrough
techniques in general is that (i) the information that resources the interaction is con-
sidered in more detail in terms of the type of information that it is and (ii) the aim of
the activity is to move towards a formal analysis and representation of these re-
sources. Observational techniques on the other hand such as distributed cognition [5]
explore the environment in which the work is carried out to characterize how action is
resourced. Elements of distributed cognition are also captured in the approach de-
scribed in the paper. Our basic premise is to specify and examine the resourcing of
individual actions. This approach can form a useful vehicle for goal based analysis, as
one can ask questions such as whether resourced actions are available which will
support achievement of the user’s goal. The basic process proposed is as follows:

• specify the actions
• specify the resourcing of actions, and perform initial analysis, possibly re-

designing and refining specification
• consider and specify potential user goals
• formulate properties, including those surrounding user goals
• run the properties over the model, and analyze the results, possibly redes-

igning and refining the specification

Of importance for mobile applications is the fact that actions may only be re-
sourced in particular locations; in this case a location model (however simple) must
be included within the analysis. Likewise, certain actions, including those to access

 Resources for Situated Actions 197

particular resources, may only be available in certain locations. We will explore the
issue of context and location modeling further in Section 3. We have a choice to make
in terms of analysis regarding how much of the user’s mental state we wish to include
in the analysis; if a current state of knowledge of the user is important to the analysis,
then this state of knowledge must be propagated through the steps of the interaction.
For the purposes of this paper, we do not pursue this form of user modeling, although
it is an attractive proposition for certain types of analysis, for example mode error.

2.1 Specifying Resources

The specification progresses by defining actions. Having specified the actions, we
move on to consider the resources which are required for the user to carry out these
actions. To do this effectively we must know whether information which is potentially
available through the system is visible when the action is to be carried out. Thus some
visibility model must be included; this can include what is seen in the environment as
well as the device. We have a choice of specifying the exact information to be dis-
played, or simply indicating the availability of the resource. Existing mechanisms for
denoting visible state, such as those in interactor models can be used. Within an
automata-based specification language such as Uppaal we can associate resources
with states, although use could also be made of integer variables and synchroniza-
tions. The system specification defines two things: the resources which are available
in a given state, and the actions which can be performed, which affect the set of avail-
able resources. Following [10], we consider here what form these may take in terms
of typical interfaces.

• status/visible information - a resource may simply consist of a piece of informa-
tion, for example the display indicates that a message is waiting (a resource) in or-
der for the user to perform an action to read the message. This is distinct from the
system being in a state where reading a message is possible. The same mechanism
can also indicate system status if this is being used in the user's interaction strategy.

• action possibility - a resource may consist of information that an action is avail-
able. There are two issues here, one is the information that the possibility for carry-
ing out the action exists (e.g. the resource lets the user know they can save an un-
sent message for resending later, a feature they were unaware of), the second is that
the action is enabled (or not) in the current state - perhaps the message memory is
full.

• action effect information - a resource may let the user know what the likely effect
of an action will be. The same piece of information on action availability may also
convey information on action effect; “press ok to save” conveys information both
on action possibility and on action effect.

• plan information - some resources provide plan information, that is, they aid in the
sequencing of user actions. For example, interfaces in which an overall task per-
formance sequence is made explicit (“You are in step 3 of 5”) are providing a plan
resource. We could deal with plan resources in much the same way as for tasks,
and either trigger a hardcoded sequence or simply constrain certain aspects of the
behavior or sequence - effectively providing a partial model.

198 G. Doherty, J. Campos, and M. Harrison

• goal information - some resources may correspond to user goals, helping the
user to formulate and keep track of multiple goals. For example, “there are new
messages” could act as a goal resource within the interaction. In complex, real-
world situations, there may well be a hierarchy of different goals, and goals may
possibly conflict, so denoting resources as goal resources is only a small part of the
analysis of goals.

• internal resources - some resources may be internal to the user - knowledge in the
user's head instead of the world. In terms of modeling, we would be introducing re-
sources and updating them with actions (such as reading the system display).

A question in terms of specification is whether any element of this categorization is
contained within the model? Given that a resource may play a number of different
roles, this could be problematic, however there is also the issue that a particular pres-
entation of the information may support some uses better than others. While specify-
ing the resourcing for particular actions, it is natural to identify obvious resourcing
issues. As the analyst must consider each action and appropriate resources, it may be
clear that a particular resource would not be available in the proposed design, and an
immediate consideration would be given to the problem. However, many resourcing
problems may be more subtle in their evolution, and will not be clear from inspection,
particularly if the user has multiple goals, and interleaves actions which contribute to
different goals. Other issues could relate to the impact of interruptions on the resourc-
ing of particular actions.

2.2 Using Goals in Analysis

Without assuming a set of predefined tasks we assume the interaction is purposeful in
the sense that the user has a goal. The user carries out a set of actions to achieve sev-
eral goals through simple action or a complicated orchestration of activities. Well
designed systems provide relevant information that can be acted upon by the user.
This information might remind the user of their goal or the means by which they are
to achieve the goal or the possibilities for action or how to invoke the action itself.
Our analysis will be carried out with respect to user goals to include:

1. Goal is to obtain information - is it possible to reach a state or resource configura-
tion in which the information resource is available?

2. Goal is to perform a procedure - the actions of the procedure are resourced, and the
sequencing of the procedure is possible while providing appropriate resources at
each point.

3. Goal is to put the system in a particular state or set of states - fully resourced se-
quences exist in which state is reached.

By default, this form of analysis will view usability problems in terms of insufficiently
resourced actions, and suggest increased resources at key points in the interaction.

2.3 Tool Support for Analysis

If we specify the system state, in terms of resources, and the behavior of the system,
in terms of the effects on available resources, we can examine the resource require-
ments of individual actions. A question which then arises is how tool support can be

 Resources for Situated Actions 199

used to support the analysis. With respect to the three analyses in Section 2.2 above,
property (1) is simple reachability - can we reach a state in which the resource is
available. This however, does not tell us anything about whether it is plausible that
the user would get to this state. Property (2) is the form of analysis introduced in [3] -
we have a task structure to be followed, and we need to check that each step in the
task is appropriately resourced. With this form of analysis the behaviors considered
are plausible, but many plausible behaviors are ignored. The final property (3) tells us
that we can reach the goal through an appropriately resourced sequence of actions, but
does not constrain this sequence. In terms of the mechanics of the analysis process,
we might well split complex goals up into a number of sub-goals, and look at these
sub-goals independently and in combination. As stated previously our analyses will
generally introduce assumptions about the user behavior - in this case, that the re-
sources we specify for the actions are used by the user in selecting and carrying out
those actions. There are a number of distinct modes of analysis based on these:

[Assumptions+Starting situation+Model+Task+Goal -> Boolean] When we combine
these assumptions with a model of the system and a model of user behavior (e.g. a
task model) and a starting situation we can ask whether the goal state is always
reached when we carry out the task.
[Assumptions+Model+Task+Goal -> Starting situations] If we leave the starting
situation undefined, we can ask for which starting situations we can/will reach the
goal by performing the task.
[Assumptions+Model+Goal+Starting situations -> Behaviours] Alternatively, we
can simply give the starting situation and system model, and analyze the range of
possible behaviors which result in both positive and negative outcomes. The analysis
in this case would focus on the strategies represented by this behavior and if they can
be improved or added to by altering the resourcing of user actions.
[Assumptions+Model+Goal -> Starting situations] If we do not specify the starting
situations, just as for the task based analysis, we can ask under which conditions we
are resourced sufficiently to reach the goal.

Model checking enables exploration of the behavior of a (finite) model of the sys-

tem. Modeling assumptions and tasks as restrictions on the system’s behavior, we can
determine whether specific (goal) states can always be reached. This corresponds to
the first type of analysis identified above. Regarding the second type of analysis, if
the starting situation is left undefined, model checking will attempt to provide counter
examples. However these counter-examples identify situations under which the sys-
tem does not exhibit the desired behavior. The alternative, then, is to generate all
possible starting situations (remember that the models must be finite for model check-
ing to work) and reduce the analysis to a series of instances of the first type. The ex-
haustive generation of these initial situations can, of course, be tool supported. Re-
garding the third type of analysis, model checking enables, as already noted, the
identifications of behaviors that do not result in the achievement of a goal. These
behaviors can then be analyzed to understand how the resourcing can be changed to
prevent them. In the last type of analysis, and because we are not prescribing a behav-
ior, we can perform an analysis similar to the previous one, but paying attention to the
initial states of the behaviors being generated by the tool. The iterative aspect of the

200 G. Doherty, J. Campos, and M. Harrison

process provides an additional advantage over cognitive walkthrough (beyond consid-
ering all the behaviors rather than just one).

3 Smart Environment Example

In this section we illustrate the role of resources in specification through a ubiquitous
system designed to support a process control system [7]. For the analysis, we make
use of a set of Uppaal models [1] which define the state of the system and the mobile
device, including its location. There is no space in this paper to describe Uppaal in
detail. A detailed explanation of the models is not required to appreciate the approach
(see http://homepages.cs.ncl.ac.uk/michael.harrison/papers/pucketmobobsnr2.xml for
one version of the model compatible with Uppaal 4.0.6). As stated previously, the
analysis is to a large extent independent of the formalism, as long as we can reason
about the availability of both actions and information within a particular situation. We
can see our model of the setting as comprising a number of components, the plant,
incorporating tanks and pumps, the mobile device, and the context.

The details of the process are irrelevant to the current consideration and can be
found in [6]. Our concern is how the goal of the process is achieved by an operator,
along the lines discussed in section 2.3, as she moves with her mobile device around
the plant carrying out appropriate actions. The process that is carried out is depicted in
Figure 1. Two goals can be achieved by the process, namely to produce product C or
to produce product D. To produce product C a material (A) must be pumped into tank
1 using pump 1 (and the tanks involved must be empty for this process to be carried
out successfully). Once tank 1 is full then pump 3 is put into forward mode (pump 3 is
directional) to move the material from tank 1 to tank 2 thereby filling tank 2. The
pumps then pause while tank 2 cooks the material, changing it from A to C. The flow
of pump 3 is then reversed and tank 1, which had previously been emptied, is filled
with the product. The final stage involves using pump 5 to remove the product from
tank 1. The second goal is achieved in a similar manner. Tank 1 is also used in this
process but this time it is fed from pump 2 and the cooking process takes place in tank
3 producing product D.

The questions that our analysis raises are (1) how do we arrive at plausible behav-
iors for achieving these two different goals? (2) given a specific proposal for the de-
sign as represented in a specification, how are these behaviors resourced and should
further features of the design be introduced in order to support the actions that the
user must carry out?

The model that is illustrated in this paper is designed to demonstrate that a resource
based approach will aid the process of design and the exploration of alternatives. The
model describes the underlying process (a part of this process is described in the
model of Figure 2). Figure 2 describes the bi-directional pumps (3 and 4). This timed
automaton captures the actions that are supported by the pumps (back?, forward?,
off?, on?), the type of material contained in the tanks represented at each side of the
pump (tk1t, tk2t) and volume of material in the two tanks (t1, t2). It also models the
time it takes to pump the material (t). This process information therefore reflects an
abstraction of the actual state of the pumps and tanks and describes the actions that
are available at any given state, regardless of how this information is resourced. This

 Resources for Situated Actions 201

pump 1

pump 2

pump 3

pump 4

pump 5

tank 2/
process X

tank 3/
process Y

substrate A

substrate B

product C product D

subst A subst B

product C /
product D

1

2

3 4

5

6

tank 1

Fig. 1. The process three tanks and five valves

information combined with further aspects of the model, that will be discussed next,
represent the system state without any concern for the interface to the operator. The
focus has been how to provide a faithful though abstract description of the system.

The important feature of the model from the perspective of the paper is to capture
those aspects of the system that combine resource information with the states and
available actions. The model of the process as a whole should also include where the
operator is in relation to the pumps that are distributed around the physical area of the
plant. This information is captured by Figure 5. This model represents where the op-
erator is (LCR represents the control room and LPi the location of each pump i). It
represents the physical topology of the space in the sense that for example if the op-
erator is near to pump 5 then it is possible to move to pump 3 or pump 1 without visit-
ing any other locations. Hence in the case of this system the possibilities for action
will include where the operator is located (it might reasonably be assumed that the
operator will know where the values are located in relation to these actions).

The most important part of the model from a resource point of view is the mobile
device (see Figure 3, first described in [7]). The model in Figure 4 describes six types
of interaction sequence. It simplifies the notion of its location in the sense that there is
no notion of being in transit (move? moves from one location to another). All
“download” (download?) actions mapped to the “component selector” therefore act
on the location at which the device is and download the controls that are available for
the proximal pump (see Figure 3). They appear in the larger display indicated (hence
pump 1 is currently available). The switch (switch?) feature mapped to the “bucket
selector” allows the operator to save controls for future use wherever the device is
located. Hence in the example (Figure 3) pump 5 has previously been saved using a
switch. It is possible in this case to switch again and make use of pump 5 controls.
These features are modeled in Figure 4. The more complicated part of the model

202 G. Doherty, J. Campos, and M. Harrison

pollution

bck

t<=rate

fwd

t<=rate

don

doff

t>=rate
forward?
t=0

t>=rate
back?
t=0

(t>=rate)&&((tk2==empty)||(tk1==full))

processtank(),
pb=false

(t>=rate)&&((tk1==empty)||(tk2==full))
processtank(),
pb=false

(t>=rate)&&(tk2==empty)&& (tk1!=empty)
tk2+=1,
tk1-=1,
tk2t=tk1t,
t=0

(t>=rate)&&(tk1<full)&&(tk2>empty)&&(tk1t==tk2t)
tk1+=1,
tk2-=1,
t=0

(t>=rate)&&(tk2<full)&&(tk1>empty)&&(tk1t==tk2t)
tk2+=1,
tk1-=1,
t=0

(t>=rate)&&(tk1==empty)&& (tk2!=empty)

tk1+=1,
tk2-=1,
tk1t=tk2t,
t=0

(t>=rate)&&(tk1<full)&&(tk2>empty)&&(tk1t!=tk2t)

(t>=rate)&&(tk2<full)&&(tk1>empty)&&(tk1t!=tk2t)

off?

off?
processtank()

back?
t=0

forward?
t=0

off?
processtank()

on?

Fig. 2. The bi-directional pump, note the fwd and bck states

describes the actions that are supported by the different types of pump. Depending on
the value of “valve” the operator is able to carry out actions that are appropriate to the
type of model in the main display. Hence in the present example valve will have the
value 1 and if the on button is selected then the model reaches a state (dp) where the
actions available are all the actions available to the directional pump. These actions
themselves control the model described in Figure 2.

The first level of exploration of resourcing involves simply inspecting the models,
identifying how the operator’s activity is resourced. This involves asking questions
about the state of the system, whether the operator should be aware of the state and
whether the possible actions appropriate to achieving a goal are clear in that state. In
practice it would be feasible to label actions or states to emphasize the role that they
play as resources as was discussed in [3]. In this particular case it makes sense to
make distinctions between:

Movement actions that change the context of interaction, and the actions available
via the mobile device. In this specification we have produced a separate model of
location (Figure 5).

Downloading a control affects both the state of the device, and the available in-
formation for the end user.

Operating a control affects the state of the plant and also the device.
Reading the display does not affect the system or device models, but could affect

the user model if one is included in the analysis. For an analysis based on Uppaal it
is potentially convenient to include such actions to facilitate analysis within the
tools.

 Resources for Situated Actions 203

delete

component selector
bucket selector

laser pointer

touch screen LED

O
N

/O
F

F

D
E

L

ON/OFF

ON/OFF
VOLUME

Volume

-
+

2.5

Pump1

Pump5

Fig. 3. The hand-held device

The second level of exploration is described in Section 2.3 as the approach: [Assump-
tions+Model+Goal+Starting situations -> Behaviors]. Several assumptions have al-
ready been made in the model (for example assumptions about the location of the pumps
and the nature of the underlying process). The starting situations are also assumed in the
model, that the various tanks are empty for example. The process is iterative. Once be-
haviors have been considered this leads to the addition of further assumptions about the
model to explore more “efficient” behaviors. The goal of producing product C is ex-
plored through the LTL property: E<>((tank1==empty)&&(tank1m==C)). This

sp

dp

vp

!pb[valve]

!pb[valve]

!pb[valve]

p5off!
pb[valve]=false

poff?

pdoff[indx]!
pb[valve]=false pb[valve]

poff?

pdfwd[indx]!

pb[valve]
pfwd?

pdbwd[indx]!

pb[valve]
pbck?

pvoff[indx]!
pb[valve]=false

pb[valve]
poff? pvdown[indx]!

pb[valve]
pdown?

pvup[indx]!
pb[valve]
pup?

p5on!

pdon[indx]!

pvon[indx]!

(valve==5)&&!pb[valve]
pon?
pb[valve]=true

((valve==3)||(valve==4))&&!pb[valve]
pon?
indx=valve-3,
pb[valve]=true

((valve==1)||(valve==2))&&!pb[valve]
pon?
indx=valve-1,
pb[valve]=true

switch?
bkt=!bkt,
valve=bkt?bucket:pos

download?
bucket=pos,
bkt=true,
valve=bucket

move?
pos=xpos,
valve=bkt?bucket:pos

Fig. 4. The model of the hand-held device

204 G. Doherty, J. Campos, and M. Harrison

LP5

LP3

LP1

LP2

LP4

LCR
!vector[1]
move!
updpath(1)

!vector[5]
move!
updpath(5)

!vector[4]
move!
updpath(4)

!vector[1]
move!
updpath(1)

!vector[3]
move!
updpath(3)

!vector[0]
move!
updpath(0)

!vector[5]
move!
updpath(5)

!vector[3]
move!
updpath(3)

!vector[2]
move!
updpath(2)

!vector[1]
move!
updpath(1)

!vector[4]
move!
updpath(4)

!vector[2]
move!
updpath(2)

!vector[0]
move!
updpath(0)

!vector[4]
move!
updpath(4)

Fig. 5. The model of the space

property is satisfied when pump 5 has been used to evacuate tank 1 and the type of the
material is C. The model checker generates a trace in which the operator starts at LCP,
visits LP4, then LP1 and uses pump 1 to fill tank 1. The operator then moves to LP5
followed by LP3, using pump 3 first to fill tank 2 from tank1 and then reversing the di-
rection of the pump and filling tank1 from tank 2 with material C, and then going back to
LP5 to evacuate tank 1.

The Uppaal system enables the designer to explore the path and at each step to ex-
plore each action, asking questions about how each step is resourced. How does the
operator know which action to carry out to achieve the goal? Does the operator need
to know the status of the process before deciding which pump to progress to? Does
the operator know where the relevant pump is? Does the operator know or need to
know that the tank is empty? These questions suggest possible modifications to the
interface.

Once this trace has been explored, the analyst should observe that this is not the
most effective path to achieve the goal. In particular the operator does not make use
of the switch facility and therefore it is necessary redundantly to revisit LP5. Further
assumptions are therefore added to check that it is always possible to achieve the goal
without unnecessarily revisiting pumps. This exploration was carried out by adding
constraints to the model, where updpath(i) forces the operator to visit any location
only once. The goal continues to be achievable and the path generated leads to further

 Resources for Situated Actions 205

exploration of the resources required to encourage the operator to save the pump in-
formation at the relevant moment. Further analysis in relation to producing product D,
when the locations are not revisited, produces a longer path than necessary. Further
constraints enable exploration of shorter paths.

For each path the same questions are asked (corresponding to the list described
above). In terms of movement actions, how do I know where to go? In terms of
switching a control, is the save action enabled and visible, is it clear which control
will be saved, is it clear what the effect on the device will be of saving the control? In
terms of resourcing for operating a control is it clear that the action is enabled and
visible, is it clear what the effect of the action will be? Appropriate information could
be specific values (the operator must know that Tank 2 contains product D), or simply
that information is available (the operator can see the level within the tank, regardless
of what the value is). The requirement for resourcing of the action of turning a pump
on includes the system constraints on it being enabled, plus the mobile device having
the pump loaded, plus the display showing the necessary information on the status of
the pump.

4 Discussion

The approach presented has opened a number of avenues for further exploration.

Resources and visibility model - We can associate resource availability with particular
states (as in Uppaal models), but direct support within the specification language
would enable more explicit analysis. While visible state in interactor style models
(such as MAL interactors [4]) provides a useful mechanism, support for dynamic
visibility within the specification language would make the specifications easier to
work with. A more sophisticated approach to the availability of resources would take
into account the salience of information, for example visibility of information com-
bined with goal relevance. Information may be potentially available, but the user may
have to forage for it; such resource finding activity is much more plausible if cues are
provided to the user. For example, in systems in which display space is limited, and
multiple actions are available, some interaction may be necessary in order to obtain
action-effect information and this itself must be resourced.

Specialized analyses - Although we have concentrated on resource based analysis in
the presence of intentional goal based behavior other analyses are advisable. Mode
concerns continue to be important and are not revealed directly by the analysis de-
scribed. Some mode errors will arise from insufficiently (externally) resourced ac-
tions, such as lack of mode indicators. Mode errors arising out of user confusions may
require some consideration of internal resources, and user mental models. Conflicting
activities often provide a setting which is conducive to mode error, and this would be
a promising direction for future investigation. For example, where there are two goals
to be achieved, opportunistic strategies for achieving both in an interleaved fashion
could be explored.

206 G. Doherty, J. Campos, and M. Harrison

Level of detail - Many analyses can be conducted looking simply at the configuration
of information resources, without specifying precisely the content and associated
application logic. While this is very attractive from the perspective of reducing the
amount of specification and focusing the analysis on the aspects of interest, it is pos-
sible that some classes of problem will be missed as a result of this.

Interaction strategies, goals and resources - While we have dealt with the resourcing
of actions as dependent only on the situation and the actions themselves, and while
such cases are those of most interest to this paper, there are potential dependencies
between the interaction strategy taken by the user, the different goals the user might
have, and the resourcing of a particular strategy. This issue needs to be addressed in
the context of the overall approach to analysis, and in particular the categorization of
resources as part of the analysis. In terms of specifying required resources, this should
be taken into account, but may also have an explicit role to play in the models (per-
haps some requirements should be parameterized with respect to user goals). It would
also be worth looking at the analysis in the context of a broader methodology such as
DiCoT [2]. The three themes of the DiCoT analysis regarding physical layout, infor-
mation flow, and use of artefacts all provide potential points of contact with the pro-
posed approach, with tool support allowing us to investigate emergent properties of
the space, the dynamic availability of information within an interaction, and the use of
(resource-providing) artefacts which exhibit complex behaviour.

5 Conclusions

A conclusion from the example is that the approach appears to be a viable one, and
seems to present some particular advantages when considering mobile systems. For
situations with less clearly defined tasks or where there are many ways of performing
a task, there is the obvious advantage over an analysis where there is no structure to
user behavior. However, as can be seen above, even where there is structure to user
tasks, the approach still presents advantages, as the focus of the analysis is quite dif-
ferent, and there is no heavy specification overhead. We could also investigate situa-
tions where user behaviour arises from a mix of well defined tasks and more oppor-
tunistic goal-directed behaviour. The resourced-action based approach is attractive in
that it considers opportunistic, situated actions, which are nonetheless purposeful, that
is, they are directed towards some goal. Analyst insight obviously comes in to play in
the resource analysis, but having an explicit activity can help to make this a more
organized and concrete activity. While support for the analysis in tools has been con-
sidered, several issues regarding such support require further investigation, particu-
larly support for more sophisticated visibility models, and tool support for more spe-
cific analyses (e.g. mode analysis).

Acknowledgments. We acknowledge with thanks EPSRC grant EP/F01404X/1 and
FCT/FEDER grant POSC/EIA/56646/2004. Michael Harrison is grateful to col-
leagues in the ReSIST NoE (www.resit-noe.org).

 Resources for Situated Actions 207

References

1. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M., Corradini,
F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)

2. Blandford, A., Furniss, D.: DiCoT: A Methodology for Applying Distributed Cognition to
the Design of Teamworking Systems. In: Gilroy, S.W., Harrison, M.D. (eds.) DSV-IS
2005. LNCS, vol. 3941, pp. 26–38. Springer, Heidelberg (2006)

3. Campos, J.C., Doherty, G.: Supporting resource based analysis of task information needs.
In: Gilroy, S.W., Harrison, M.D. (eds.) DSV-IS 2005. LNCS, vol. 3941, pp. 188–200.
Springer, Heidelberg (2006)

4. Campos, J.C., Harrison, M.D.: Model checking interactor specifications. Automated
Software Engineering 8(3-4), 275–310 (2001)

5. Hutchins, E.: Cognition in the Wild. MIT Press, Cambridge (1995)
6. Loer, K., Harrison, M.D.: Analysing user confusion in context aware mobile applications.

In: Costabile, M.F., Paternó, F. (eds.) INTERACT 2005. LNCS, vol. 3585, pp. 184–197.
Springer, Heidelberg (2005)

7. Nilsson, J., Sokoler, T., Binder, T., Wetcke, N.: Beyond the Control Room: Mobile
Devices for Spatially Distributed Interaction on Industrial Process Plants. In: Thomas, P.,
Gellersen, H.-W. (eds.) HUC 2000. LNCS, vol. 1927, pp. 1–30. Springer, Heidelberg
(2000)

8. Polson, P.G., Lewis, C., Rieman, J., Wharton, C.: Cognitive walkthroughs: a method for
theory-based evaluation of user interfaces. International Journal of Man-Machine
Studies 36(5) (1992)

9. Suchman, L.A.: Plans and Situated Actions: The Problem of Human-Machine
Communication. Cambridge University Press, Cambridge (1987)

10. Wright, P.C., Fields, R.E., Harrison, M.D.: Analyzing human-computer interaction as
distributed cognition: the resources model. Human Computer Interaction 15(1), 1–42
(2001)

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 208 – 224, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Architecture and a Formal Description Technique
for the Design and Implementation of Reconfigurable

User Interfaces

David Navarre, Philippe Palanque, Jean-François Ladry, and Sandra Basnyat

Institute of Research in Informatics of Toulouse (IRIT)
University Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 9, France

{navarre, palanque, ladry, basnyat}@irit.fr

Abstract. This paper proposes an architecture that provides a means to handle
failures of input and output devices. This handling is done by means of previ-
ously defined and designed configurations. According to the failure identified at
runtime of the interactive system, the most appropriate configuration will be
loaded and executed. Such reconfiguration aims at allowing operators to con-
tinue interacting with the interactive system even though part of the user inter-
face hardware has failed. These types of problems arise in domains such as
command and control systems where the operator is confronted with several
display units and can use various combinations of input devices either in a
mono-modal or in a multimodal manner.

Keywords: Model-based approaches, ARINC 661 specification, formal de-
scription techniques, interactive software engineering, interactive cockpits.

1 Introduction

Command and control systems have to handle large amounts of increasingly complex
information. Current research in the field of Human-Computer Interaction (HCI)
promotes the development of new interaction and visualization techniques in order to
increase the bandwidth between the users and the systems. Such an increase in band-
width can have a significant impact on efficiency (for instance the number of com-
mands triggered by the users within a given amount of time) and also on error-rate
[21] (the number of slips or mistakes made by the users).

Within the HCI discipline, the focus has mainly been on the usability of such inter-
faces [20, 25] or has addressed this issue in an exploratory mode trying to define,
design and compare innovative interaction techniques [22, 17] targeting efficiency.
More recent work goes beyond that aspect extending usability concerns to engage-
ment-related aspects such as in the User eXperience trend [13, 9].

Post-WIMP user interfaces [26] provide users with a set of interaction techniques
usually based on the direct manipulation paradigm [24]. This includes, for instance,
keyboard and mouse as hardware input devices and double click, drag and drop,
Ctrl+click, … as interaction techniques. One of the recurrent characteristics of such
interfaces is that the interaction techniques are defined in a static way i.e. remaining
the same throughout the use of the application.

An Architecture and a Formal Description Technique for the Design and Implementation 209

In this paper we address the problem of designing multiple configurations of interac-
tion techniques and making them available to the user according to the operational con-
text. In terms of context we focus here on environmental evolutions related to failures i.e.
reconfiguration of interaction techniques related to downgraded and/or degraded modes
of an operational system after an input or output device failure has occurred.

Exploiting such possibilities calls for methods, techniques and tools to support various
configurations at the specification level (specify in a complete and unambiguous way the
configurations i.e. the set of desired interaction techniques and output configurations), at
the validation level (ensure that the configurations meet the requirements in terms of
usability, reliability, human-error-tolerance, fault-tolerance and possibly security), at the
implementation level (support the process of going from the specification to the imple-
mentation of the configurations in a given system) and for testing (how to test the effi-
ciency of the configurations and of the re-configured system).

A recent trend in Human-Computer Interaction has addressed the issue of dynamic
reconfiguration of interfaces under the concept of plasticity coined by J. Coutaz [10]
and extends previous considerations around the notion of adaptive interfaces1 [6, 15]
to the notion of context-aware systems. However, research work on plasticity mainly
addresses reconfiguration at the output level i.e. adapting the presentation part of the
user interface to the display context (shrinking or expanding presentation objects
according to the space available on the display) [7, 8]. In addition, reliability issues
and specification aspects of plastic interfaces are not considered. Recent work on
website personalisation/configuration [11] and [23] struggles with the same concepts
and constraints even though, here again, personalisation remains at a look and feel
level and does not deal with how the users interact with the web application. Our
work differs significantly as according to the application domain we are considering
(interactive cockpits of which fundamental features are defined within the ARINC
661 specification standard) users are pilots who must follow long and intensive train-
ing programmes (including on-the-fly training) and thus be trained for authorised
reconfigurations while web users passively undergo the reconfigurations.

These issues go beyond current state of the art in the field of interactive systems
engineering where usually each interactive system is designed with a predefined set of
input and output devices that are to be used according to a static set of interaction
techniques which are identified at design time. However, current safety critical sys-
tems, for example, the cockpit of the Airbus A380, has 8 display units with 4 offering
interaction via keyboard and mouse by means of an integrated input device called
KCCU (Keyboard Cursor Control Unit). Applications are allocated to the various
display units. If one of the display units fails, (like the importance of the application
according to the flight phase) then the applications are migrated to other available
display units according to predefined criteria. On the input side, the pilot and the first
officer are both equipped with a KCCU and thus multimodal (multiuser) direct ma-
nipulation techniques can be envisaged.

This paper proposes the exploitation of a formal description technique (the ICO for-
malism [19]), architecture and a supporting tool that provide a means to handle both
static and dynamic aspects of input and output devices configuration and reconfiguration.

1 In adaptive interfaces the main element of adaptation is based on the notion of user model.

210 D. Navarre et al.

The ICO formalism is a formal description technique dedicated to the specification
of interactive systems [18]. It uses concepts borrowed from the object-oriented ap-
proach (dynamic instantiation, classification, encapsulation, inheritance, client/server
relationship) to describe the structural or static aspects of systems, and uses high-level
Petri nets [12] to describe their dynamic or behavioural aspects.

The paper is structured as follows: the next section briefly introduces the ARINC
661 specification while section 3 presents the generic architecture for reconfiguration.
Section 4 presents the detailed architecture we propose. Section 0 presents the con-
figuration management and proposes a set of configuration manager models.

2 ARINC 661 Specification

The Airlines Electronic Engineering Committee (AEEC) (an international body of
airline representatives leading the development of avionics architectures) formed the
ARINC 661 Working Group to define the software interfaces to the Cockpit Display
System (CDS) used in all types of aircraft installations. The standard is called ARINC
661 - Cockpit Display System Interfaces to User Systems [2, 3].

In ARINC 661, a user application is defined as a system that has two-way commu-
nication with the CDS (Cockpit Display System):

• Transmission of data to the CDS, possibly displayed to the flight deck crew.
• Reception of input from interactive items managed by the CDS.

Fig. 1. Abstract architecture and communication protocol between Cockpit Display System and
a User Application

According to the classical decomposition of interactive systems into three parts
(presentation, dialogue and functional core) defined in [5], the CDS part (in Fig. 1)
may be seen as the presentation part of the whole system, provided to the crew
members, and the set of UAs may be seen as the merge of both the dialogue and the
functional core of this system. ARINC 661 then puts on one side input and output
devices (provided by avionics equipment manufacturers) and on the other side the
user applications (designed by aircraft manufacturers). Indeed, the consistency
between these two parts is maintained through the communication protocol defined
by ARINC 661.

An Architecture and a Formal Description Technique for the Design and Implementation 211

3 A Generic Architecture for User Interaction Reconfiguration

In this section we present, a generic extension to the ARCH software architecture [4],
to support configuration definitions and reconfiguration management in the field of
safety critical application. This architecture aims at describing the various compo-
nents as well as their interrelations. As stated in the introduction, the architecture
targets resilient systems [13] offering a continuity of interaction service despite partial
failure of an input or output device.

In order to reach this goal, we propose to decompose the interactive system into
two parts: the server side2 (including the window manager, the interaction techniques
and the (re)configuration manager) and the application side (including all the graphi-
cal components such as widgets … up to the functional core).

This architecture is generic as it represents the architecture of most interactive sys-
tems platforms. However, research work dealing with software architectures for inter-
active systems typically focus on the application side as they deal with the design and
construction of interactive applications. The work presented in this paper covers not
only the application side but also the windows manager side that is typically consid-
ered has beyond the scope of the architectures.

Fig. 2. The server/application dichotomy and their connection point according to the ARCH

Fig. 2 presents the architecture of the two components of the reconfigurable inter-
active system. The left-hand side shows the architecture of the interaction server
(software part of the CDS) while the application architecture is represented on the
right-hand side. It is noticeable that both components are compliant with the ARCH
model and that their interconnection point is the physical interaction part of the appli-
cation with the functional core part of the server. More precisely, this “shared” com-
ponent holds the set of widgets available in the various windows of the application.
On the application side they represent the physical interaction (where the crew mem-
ber can interact with). On the server side these widgets correspond to the data man-
aged by the server.

2 This terminology comes from the ARINC 661 specification standard. While such wording

could be questionable in the field of interactive systems engineering we prefer to conform to
the standard this work is applied to.

212 D. Navarre et al.

The detail of this architecture (including the structure and behaviour of each com-
ponent) is detailed in section 4 on a case study in the field of interactive cockpits.

4 An Architecture for Reliable and Reconfigurable Interfaces

One of the aims here is to define an architecture that supports usability aspects of
safety critical systems by taking into account potential malfunctions in the input (out-
put respectively) devices that allow the operators to provide (perceive respectively)
information or trigger commands (perceive command results respectively) to the
system. Indeed, any malfunction related to such input devices might prevent operators
to intervene in the systems functioning and thus jeopardize the mission and poten-
tially put human life at stake. In systems offering standard input device combination
such as keyboard & mouse, it is possible to handle one input device failure by provid-
ing redundancy in the use of the device. For instance a soft keyboard such as the ones
defined in [16] can provide an efficient palliative for a keyboard failure3.

The architecture presented in Fig. 3 proposes a structured view on the findings of a
project dealing with formal description techniques for interactive applications compli-
ant with the ARINC 661 specification [5]. Applications are executed in a Cockpit
Display System (CDS) that aim to provide flight crew with all the necessary informa-
tion to try to ensure a safe flight.

Fig. 3. Detailed architecture compliant with ARINC 661 specification not supporting interac-
tion failures

We are dealing with applications that exclude primary cockpit applications such as
PFD (Primary Flight Display) and ND (Navigation Displays) and only deal with sec-
ondary applications such as the ones allocated to the MCDU (Multiple Control Dis-
play Unit). For previous CDSs (such as the glass cockpit of the A320) these applica-
tions were not interactive (they only displayed information to the crew) and inputs
were made available through independent physical buttons located next to the display
unit. The location in the cockpit, between the pilot and the first officer make it possi-
ble for both of them to use such an application.

3 This kind of management of input device failure could and should prevent the typical error

message on PCs when booting with a missing keyboard "Keyboard Failure strike F1 key to
continue”.

An Architecture and a Formal Description Technique for the Design and Implementation 213

A single notation (ICOs) is exploited to model the behaviour of all the components
of an interactive application compliant with ARINC 661 specification. This includes
each interactive component (called widgets) the user application (UA) per se and the
entire window manager (responsible for the handling of input and output devices, and
the dispatching of events (both those triggered by the UAs and by the pilots) to the
recipients (the widgets or the UAs).

The two main advantages of the architecture presented in Fig. 3 are:

• Every component that has an inner behaviour (server, widgets, UA, and the
connection between UA and widgets, e.g. the rendering and activation func-
tions) is fully modelled using the ICO formal description technique thus
making it possible to analyse and verify the correct functioning of the entire
computer system4,

• The rendering part is delegated to a dedicated language and tool (such as
SVG, Scalable Vector Graphics), thus making the external look of the user
interface independent from the rest of the application, providing a framework
for easy adaptation of the graphical aspect of cockpit applications.

However, this architecture does not support reconfiguration of input or output de-
vices in the cockpit, neither in case of redesign nor in case of failure while in opera-
tion. However, requirements specification for a display unit (DU) like the one of the
Airbus A380 explicitly requires the possibility for the co-pilot to read information on
the DU of the pilot (in case of failure on his/her side for instance).

The new architecture we propose has been extended to explicitly manage the re-
configuration of applications on the display units. It presents a refinement of the ar-
chitecture proposed in Fig. 2. In the architecture (presented in

Fig. 4), all the elements of which the behaviour is formally defined using the ICO
formalism appear in a box featuring a small Petri net inside. Indeed, the input and
output devices are formally described using the ICO notation in order to be handled
by a configuration manager which is also responsible for reconfiguring devices and
interaction technique according to failures. These failures are detected by a software
module (called Device Inspector) testing on a regular basis the functioning of the
input and output devices.

Fig. 4 the dashed-line section highlights the improvements made with respect to
the previous architecture:

• The left-hand part of the frame highlights the addition of ICO models dedi-
cated to both input and output devices,

• The right-hand part presents the introduction of a new component named
configuration manager responsible for managing the configuration of input
and output devices

• The configuration and server rendering component responsible for repre-
senting, on the user interface, the current configuration. In the case study the
current configuration is represented to the crew by different mouse cursors.
This is why that component is connected both to the server (to access

4 Even though we previously worked on broader issues including incidents and accident analy-

sis and modelling, training and user manual design, this paper focuses on the technical aspects
of interactive software reconfiguration.

214 D. Navarre et al.

information about the position of the cursor) and to the configuration man-
ager to access information about the current configuration.

The upper dark line on top of

Fig. 4 positions the architecture according to the ARINC 661 decomposition while
the lower dark line positions the various components according to the generic archi-
tecture presented in Fig. 2.

Even though modelling of input devices and interaction techniques has already
been presented in the context of multimodal interfaces for military cockpits [5] it was
not integrated with the previous architecture developed for interactive applications
compliant with ARINC 661 specification. The rest of the paper thus focuses on the
configuration manager that is dedicated to the dynamic reconfiguration of user inter-
action (both input devices and interaction techniques).

5 Configuration Manager Policy and Modelling

This section presents the modelling of different policies to manage both input and
output device configuration. We first present two policies and then present a formal
modelling of such policies using the ICO formalism.

5.1 Input and Output Management Policies

Configuration management activities may occur at either runtime (while a user inter-
acts with the application) or “pre-runtime” (e.g. just before starting an application or
during a switchover of users). To illustrate the different kinds of policy, we present a
pre-runtime policy where input devices are involved and a runtime policy for manag-
ing output devices.

5.2 Input Device Configuration Manager Policy

A possible use of reconfiguration is to allow customising the interaction technique to
make the application easier to manipulate. Even if it is out of the scope of the current
version of the ARINC 661 Specification, customisation of interaction techniques may
becomes necessary when continuity of interaction service has to be improved allow-
ing users to carry on interacting with the system even though some input and output
devices are out of order.

The current case study presents 2 configurations. The standard configuration al-
lows the first officer (FO) and the pilot to interact at the same time on the various
widgets of the applications running on the interactive display units of the cockpit. A
selection of critical commands requires the pilot and the FO to interact within a short
temporal window on the widget. While on the user side, such an interaction technique
appears as a simple click for each user, on the system side it is handled as if one user
was interacting with two mice and producing MixedClicks i.e. a click with both mice
on the same widget. If one KCCU fails then the interaction technique is reconfigured
and MixedClicks are replaced by DoubleClicks for triggering critical commands.

An Architecture and a Formal Description Technique for the Design and Implementation 215

Fi
g.

 4
. O

ve
rv

ie
w

 o
f

th
e

ar
ch

it
ec

tu
re

 c
om

pl
ia

nt
 w

it
h

A
R

IN
C

 6
61

 s
p e

ci
fi

ca
ti

on
 a

nd
 s

up
po

rt
in

g
in

te
ra

ct
io

n
fa

il
ur

es

216 D. Navarre et al.

5.3 Output Device Configuration Manager Policy

A policy has to be defined on what kind of changes have to be performed when a
display unit fails. This policy is highly based on the windowing system adopted by the
standard ARINC 661 specification.

Display Unit
 - Screen -

Window
(managed
by the CDS) Layer

(owned by one
User Application) Widget

Format

Application 1

Application 3

Application 2

Application 1

Fig. 5. ARINC 661 Specification windowing architecture

The ARINC 661 Specification uses a windowing concept which can be compared
to a desktop computer windowing system, but with many restrictions due to the air-
craft environment constraints (see Fig. 5). The windowing system is split into 4
components:

• the display unit (DU) which corresponds to the hardware part,
• the format on a Display Unit (DU), consists of a set of windows and is de-

fined by the current configuration of the CDS,
• the window is divided into a set of layers (with the restriction of only one

layer activated and visible at a time) in a given window,
• the widgets are the smallest component on which interaction occurs (they

corresponds to classical interactors on Microsoft Windows system such as
command buttons, radio buttons, check buttons, …).

When a display unit fails, the associated windows may have to be reallocated to
another display unit. This conditional assertion is related to the fact that:

• There might not be enough space remaining on the other display units (DU),
• The other applications displaying information on the other DU might have a

higher priority.

The ARINC 661 Specification does not yet propose any solution to this particular
problem but it is known as being critical and future supplements of the ARINC 661
specification may address this issue5. However at the application level, the UADF
(User Application Definition File) defines a priority ordering among the various lay-
ers included in the user application. At any given time only one layer can be active.
At runtime, the activation of a new layer must be preceded by the deactivation of the
current layer.

5 ARINC 661 specification is continuously evolving since the first proposal. The draft 2 of

supplement 3 containing 374 pages has been released on August 15th 2007.

An Architecture and a Formal Description Technique for the Design and Implementation 217

The policy that we have defined lays in the definition of a set of compatible win-
dows i.e. windows offering a greater or equal display size. This is related to a strong
limitation imposed by ARINC 661 which states that some methods and properties are
only accessible at design time i.e. (according to ARINC 661 specification vocabulary)
when the application is initialized. Methods and properties related to widget size are
not available at runtime and thus any reorganisation of widgets within a window is
not possible.

The only policy that can thus be implemented is a policy where first a compatible
window has to be found and then the question of priority has to be handled. Since
only layers have a priority it is not possible for an application or a window to have a
priority. This cannot be done either at design time or runtime and thus the manage-
ment policy can only take place at the layer level.

5.4 Configuration Manager Behaviour

This section presents possible models for the configuration management according to
the policies described above. We first present how input device configurations are
managed and then deal with output devices managements.

Input devices Management
The user interface server manages the set of widgets and the hierarchy of widgets
used in the User Applications. More precisely, the user interface server is responsible
in handling:

• The creation of widgets
• The graphical cursors of both the pilot and his co-pilot
• The edition mode
• The keyboard and mouse events and dispatching it to the corresponding

widgets
• The highlight and the focus mechanisms
• …

As it handles many functionalities, the complete model of the sub-server (dedicated
in handling widgets involved in the MPIA User Application) is complex and difficult
to manipulate without an appropriate tool, and cannot be illustrated in a diagram.

Events received by the interaction server are in some way high level events as they
are not the raw events produced by the input devices drivers. In our architecture, the
main role of an input configuration is the role of a transducer [1]; it receives raw
events and produces higher level events. The events used by the interaction server,
and so produced by an input configuration are (normalKey, abortKey, validationKey,
pickup, unPickup, mouseDoubleClicked, mouseClicked). These events are produced
from the following set of raw events: mouseMoved, mouseDragged, mousePressed,
mouseReleased, mouseClicked and mouseDoubleClicked from the mouse driver, and
pickup and unPickup from the picking manager.

Fig. 6 models the handling of raw events from the KCCU for the production of up-
per level events such as mouseMove, mousePressed, mouseReleased, etc. The model

218 D. Navarre et al.

is common for the two interaction techniques, DoubleClick and MixedClick, each
represented within their own model. Switching between these models is performed at
the interaction technique level and not at the raw events level. This raw events model
first tests the value of a variable “changed” defined in transition CheckMouseState
(upper transition in Fig. 6) every chosen number of milliseconds (in this model,
100ms) in order to verify if the state of the mouse has changed since the previous
check. According to the value of the variable, transition hasNotChanged or has-
Changed will fire.

Fig. 6. Model of the raw events handling for both configurations

Following this, there are two further tests, according to the movement of the mouse
and the state of the mouse button. The movement test is modelled using transition
axisChanged, (left hand side of the model) according to x,y coordinates (mouse-
Move). Transition buttonChanged (right hand side of the model) checks to see if there
has been a change in the state of the mouse button which produces mousePressed or
mouseReleased events. Only the left mouse button is considered in this example to
reduce the complexity of the model. After the axisChanged and buttonChanged tests,
transition done is fired placing a token in place MouseNumber ready to restart the
simulation.

The model in Fig. 7 presents how low level events produced are combined at the
interaction technique level to produce higher-level events. Transitions mouse-
Pressed_t1 and mouseReleased_t1 receives events from transition buttonChanged
modelled in the “raw events” model shown in Fig. 6. The left part of this model pro-
duces a single click from a mousePressed and a mouseReleased from mouse1 (ie.
Pilot mouse), while the right hand part of the model performs the same behaviour for
mouse2 (ie. First officer mouse). The model states that if a MouseClick is performed
(by either person) which starts a timer, and a second event MouseClick (performed

An Architecture and a Formal Description Technique for the Design and Implementation 219

with the other mouse) is received before the end of the timer, then the model produces
a MixedClick event (transition triggerMixedClick at the bottom of the figure).

Fig. 8 represents the DoubleClick interaction technique in the degraded mode i.e.
when only one KCCU is available. The model receives events mousePressed,
mouseReleased and mouseMoved from the raw events model presented in Fig. 6.
They are then processed in order to be able to raise DoubleClick events which occur
when the KCCU has been pressed and released twice within a predefined temporal
window and without any mouseMove event in-between.

Fig. 7. Model of the mixed (both KCCU) click configuration

Fig. 8. Model of the DoubleClick configuration

220 D. Navarre et al.

Configurations Management
Fig 9 presents the model responsible for the management of the configurations. The
basic principle of the model is that the current configuration has to be removed (un-
registered part of the model on the right hand side of the figure) before the new de-
sired configuration is set (register configuration part of the model on the left hand side
of the figure).

The four places in the central part of Fig 9 (MouseDriver, KeyboardDriver, Pick-
ingManager and InteractionServer) contain a reference to the set of models corre-
sponding to the input devices and to the interaction server. When a new configuration
is requested to be set, a token with a reference to the new configuration is put in place
NewConfiguration. Following this, the four transitions highlighted on the left hand
side are fired in sequence (could be modelled as parallel behaviour as well) in order to
register the new configuration as a listener of the events produced by the mouse
driver, the keyboard driver and the picking manager. The fourth transition registers
the interaction server as a listener of the events produced by the new configuration.

Fig. 9. ICO model of the configuration manager part dedicated to the input devices

An Architecture and a Formal Description Technique for the Design and Implementation 221

If a configuration is already set, when the new configuration is requested, a token
is put in place UnregisterCurrent in order to fire the four transitions highlighted on
the right handside, corresponding to unregister from the different models, in parallel
with registering the new configuration.

Output devices Management
In Fig. 10, we present an implementation of the previously defined policy for han-
dling output devices using the ICO formalism. This model is a subpart of the com-
plete configuration manager that can be added to the previous modelling we have
done and thus be integrated in the behaviour of our (Cockpit Display System) CDS
model [5].

1

2

Layers

Activation

Management

3

4

Fig. 10. An ICO model of a configuration manager

The model presented here is based on a very simple case (1 layer per window and 1
window per display unit). This information flow and the operation to be performed
remain the same, but it is possible to build models for a much more complex case as
ICO proposes a means to handle such complexities:

1. The display unit (DU) notifies its failure (the event may be triggered by a sen-
sor), and then the configuration manager located the window currently displayed
in that DU.

2. The configuration manager finds a compatible window for a reallocation of the
contained layers (here all compatible windows are listed at creation time) and
the layers are transferred to the new window.

222 D. Navarre et al.

3. As in a given window only one layer can be activated, when layers are reallo-
cated, the configuration manager must identify the layer to be activated (among
the new set of layers related to the window presented on the non functioning
DU).

4. That part of the model determines which layer must be activated according to the
layer priority defined at creation time:

• If the layer from the previous window has a higher priority than the one from
the new window, then the layer from the new window is deactivated, sending
a notification to the corresponding user application according to the ARINC
661 Specification protocol (the UA may (or may not) request to reactivate
the layer depending on its defined behaviour).

• Otherwise, the layer from the previous window is deactivated (leading to the
same effects).

• In both case, the list of activated layers is updated.

6 Conclusion and Perspectives

This paper addressed the issue of user interface reconfiguration in the field of safety
critical command and control systems. The application domain is civil aircraft cockpit
systems compliant with the ARINC 661 specification (which defines communication
protocols and window management policy for cockpit displays systems). This work
complements previous work we have done on this topic [5] by extending the behav-
ioural model of cockpit display system with fault-tolerant behaviour and with a ge-
neric architecture allowing static configuration as well as dynamic reconfiguration of
interaction techniques. It is important to note that such fault-tolerance is only related
to the user interface part of the cockpit display system even though it takes into con-
sideration input and output devices as well as the behaviour of the window manager.

Acknowledgements. This work is supported by the EU funded Network of Excel-
lence ResIST http://www.resist-noe.eu under contract n°026764 and the CNES
funded R&T Tortuga project http://ihcs.irit.fr/tortuga/ under contract n° R-S08/BS-
0003-029.

References

1. Accot, J., Chatty, S., Maury, S., Palanque, P.: Formal Transducers: Models of Devices and
Building Bricks for Highly Interactive Systems (1,1 Mo). In: 4th EUROGRAPHICS work-
shop on design, Granada, Spain, June 5-7, 1997. Springer, Heidelberg (1997)

2. ARINC 661, Prepared by Airlines Electronic Engineering Committee. Cockpit Display
System Interfaces to User Systems. ARINC Specification 661 (2002)

3. ARINC 661-2, Prepared by Airlines Electronic Engineering Committee. Cockpit Display
System Interfaces to User Systems. ARINC Specification 661-2 (2005)

4. Bass, L., et al.: A metamodel for the runtime architecture of an interactive system: the
UIMS tool developers workshop. In: SIGCHI Bulletin, vol. 24(1), pp. 32–37 (1992)

An Architecture and a Formal Description Technique for the Design and Implementation 223

5. Barboni, E., Conversy, S., Navarre, D., Palanque, P.: Model-Based Engineering of Wid-
gets, User Applications and Servers Compliant with ARINC 661 Specification. In: Do-
herty, G., Blandford, A. (eds.) DSVIS 2006. LNCS, vol. 4323, pp. 25–38. Springer, Hei-
delberg (2007)

6. Benyon, D., Murray, D.: Experience with Adaptive Interfaces. The Computer Jour-
nal 31(5), 465–473 (1988)

7. Berti, S., Correani, F., Paternò, F., Santoro, C.: The TERESA XML Language for the De-
scription of Interactive Systems at Multiple Abstraction Leveles. In: Proceedings Work-
shop on Developing User Interfaces with XML UIXML: Advances on User Interface De-
scription Languages, May 2004, pp. 103–110 (2004)

8. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for multi-target user interfaces. Interacting with Com-
puters 15(3), 289–308 (2003)

9. Csíkszentmihályi, M.: Flow: The Psychology of Optimal Experience. Harper and Row,
New York (1990)

10. Thevenin, D., Coutaz, J.: Plasticity of User Interfaces: Framework and Research Agenda.
In: Proceedings of Interact 1999. Edinburgh: IFIP TC 13, vol. 1, pp. 110–117. IOS Press,
Amsterdam (1999)

11. Eirinaki, M., Lampos, C., Paulakis, S., Vazirgiannis, M.: Web personalization integrating
content semantics and navigational patterns. In: WIDM 2004: Proceedings of the 6th an-
nual ACM international workshop on Web information and data management, pp. 72–79.
ACM Press, New York (2004)

12. Genrich, H.J.: Predicate/Transitions Nets. In: Jensen, K., Rozenberg, G. (eds.) High-
Levels Petri Nets: Theory and Application, pp. 3–43. Springer, Heidelberg (1991)

13. Hollnagel, E., Woods, D.D., Leveson, N.: Reliability Engineering, Ashgate, p. 397 (2006)
ISBN 0754646416

14. Hassenzahl, M.: The Interplay of Beauty, Goodness, and Usability in Interactive Products.
Human-Computer Interaction 19(4), 319–349 (2004)

15. Kay, A.: Pragmatic User Modeling for Adaptive Interfaces, and Lies, Damned Lies and
Stereotypes: pragmatic approximations of users. In: Proceedings of the User Modeling 94
Conference, pp. 175–184. The Mitre Corporation (1994)

16. MacKenzie, S., Zhang, S.X., Soukoreff, R.W.: Text entry using soft keyboards. Behaviour
& Information Technology 18, 235–244 (1999)

17. MacKenzie, S., Oniszczak, A.: A comparison of three selection techniques for touchpads.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
Conference on Human Factors in Computing Systems, Los Angeles, California, United
States, April 18 - 23, 1998, pp. 336–343. ACM Press/Addison-Wesley Publishing Co,
New York (1998)

18. Navarre, D., Palanque, P., Bastide, R.: A Tool-Supported Design Framework for Safety
Critical Interactive Systems in Interacting with computers, vol. 15/3, pp. 309–328. El-
sevier, Amsterdam (2003)

19. Navarre, D., Palanque, P., Bastide, R.: A Formal Description Technique for the Behav-
ioural Description of Interactive Applications Compliant with ARINC 661 Specifications.
In: HCI-Aero 2004, Toulouse, France, 29 September-1st (October 2004)

20. Nielsen, J.: Usability Engineering. Academic Press, London (1993)
21. Reason, J.: Human Error. Cambridge University Press, Cambridge (1990)
22. Rekimoto, J.: Pick-and-drop: a direct manipulation technique for multiple computer envi-

ronments. In: Proceedings of the 10th Annual ACM Symposium on User interface Software
and Technology. UIST 1997, Banff, Alberta, Canada, October 14 - 17, 1997, pp. 31–39.
ACM, New York (1997)

224 D. Navarre et al.

23. Ríos, S.A., Velásquez, J.D., Yasuda, H., Aoki, T.: Web Site Off-Line Structure Reconfigu-
ration: A Web User Browsing Analysis. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.)
KES 2006. LNCS (LNAI), vol. 4252, pp. 371–378. Springer, Heidelberg (2006)

24. Shneiderman, B.: Direct manipulation: a step beyond programming languages, August
1983. IEEE Computer Society Press, Los Alamitos (1983)

25. Summers, S.: Usability in Battle Management System Human-Machine Interface Design:
Assessing Compliance with Design Guide Heuristics. In: Human Factors and Ergonomics
Society Annual Meeting Proceedings, Computer Systems, pp. 709-713. Human Factors
and Ergonomics Society (2007)

26. van Dam, A.: Post-WIMP user interfaces. Communications of the ACM 40(2), 63–67
(1997)

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 225 – 237, 2008.
© Springer-Verlag Berlin Heidelberg 2008

COMET(s), A Software Architecture Style and an
Interactors Toolkit for Plastic User Interfaces

Alexandre Demeure1, Gaëlle Calvary2, and Karin Coninx1

1 Hasselt University - tUL - IBBT
Expertise Centre for Digital Media

Wetenschapspark 2, B-3590 Diepenbeek, Belgium
{alexandre.demeure, karin.coninx}@uhasselt.be

2 Laboratoire LIG, 385, rue de la Bibliothèque - B.P. 53 –
38041 Grenoble Cedex 9, France
Gaelle.Calvary@imag.fr

Abstract. Plasticity of User Interfaces (UIs) refers to the ability of UIs to with-
stand variations of context of use (<User, Platform, Environment>) while pre-
serving usability. This paper presents COMET, a software architecture style for
building task-based plastic interactors. COMET bridges the gap between two
main approaches in plasticity: model-driven engineering and interactors tool-
kits. Interactors that are compliant to the COMET style are called COMETs.
These COMETs are multi-rendering multi-technological interactors (WIMP and
post-WIMP, Web and non Web as well as vocal). COMETs are extensible and
controllable by the user (up until now the designer, in the future the end-user).
The COMET architecture and the use of COMETs are illustrated on an execu-
table prototype: a slide viewer called CamNote++.

Keywords: Adaptation, context of use, plasticity, design alternatives, explora-
tion, style sheets, tailored UIs, interactors.

1 Introduction

In the vision of ubiquitous computing users live in dynamic environments that change
over time. Interactional, computational as well as communicational resources may
arrive and disappear opportunistically. As these changes cannot always be foreseen at
design time, there is a need for User Interfaces (UIs) to dynamically adapt to the ac-
tual context of use (<User, Platform, Environment>) while preserving usability. We
use the term Plasticity [17] to denote this UI property. In this paper, we provide the
designer (in the future the end-user) with tools for building plastic UIs and for explor-
ing alternative renderings at design time as well as at runtime. The corner stone is a
software architecture style called COMET (COntext Mouldable widgET) [3].
COMET compliant interactors are called COMETs.

COMETs are task-based interactors. They group together presentations that sup-
port a particular user’s task. For instance, a set of radio buttons, a combo-box, a list
and a pie menu (Fig. 1-A-1) support the user to “select one option among N”. As a
result, they are gathered in one and the same COMET which purpose is to select one

226 A. Demeure, G. Calvary, and K. Coninx

option among N. In the same way, COMETs based on task operators are defined. For
instance, the interleaving COMET groups together several presentations for rendering
interleaving. This can be done by putting the interleaved subtasks side by side in a
certain window (Fig. 1-A-1), by using multiple windows (Fig. 1-A-2) or a navigation
interactor such as a menu (Fig. 1-B). These two kinds of COMETs rely on the same
architectural style: COMET.

Fig. 1. Functionally equivalent interactors that vary from different points of view: navigation
(A versus B), number of windows (A1 and B versus A2) and interactors presentations

COMET, the proposed architectural style, is fashioned for supporting polymor-
phism (i.e. multiple presentations) where presentations can belong to different render-
ing technological spaces (e.g. HTML, OpenGL, vocal). The goal of COMET(s) is to
sustain the following four requirements:

• Sustaining UI adaptation at any level of abstraction: tasks and concepts, abstract,
concrete and final UI as elicited in model-based approaches [2].

• The ability of UIs to be simultaneously rendered in several technologies including
web and non web, WIMP and non WIMP, and also textual input and voice output.

• The ability of UIs to be dynamically transformed including enrichments with ex-
ternal and tailored UIs.

• The ability for the user (designer and/or end-user) to explore design alternatives by
substituting presentations of COMETs at design time as well as at runtime.

Fig. 2 provides an overview of the global approach. The principles are threefold:
(1) a UI is fully defined as a graph of COMETs, (2) the graph can be tuned through
transformations, (3) transformations can take benefit from a semantic network [8] to
retrieve components (COMETs as well as presentations of COMETs) and update the
graph of COMETs accordingly.

This paper focuses on the graph of COMETs. The transformations are not de-
scribed because of space. The semantic network is described in [8]. Section 2 presents
the related work. Section 3 describes an executable demonstrator implemented with
COMETs. Section 4 is devoted to the COMET architectural style. Finally, section 5 is
about development using COMETs.

1) One window 2) Multiple windows

A) No navigation B) With navigation

 COMET(s), A Software Architecture Style and an Interactors Toolkit 227

Fig. 2. An overview of the COMET-based approach

2 Related Work

In plasticity, the state of the art can be roughly categorized into three main ap-
proaches: Model Driven Engineering (MDE), window managers and widget toolkits.

MDE is probably the area [2,7,9] that recently received the most attention. Separa-
tion of concerns is the core principle. A UI is described from different perspectives
(task, concepts, abstract UI (AUI), concrete UI (CUI), final UI (FUI)), each of them
giving rise to a specific model. In the same way, the functional core and the context of
use can be described along a set of models. Models are linked together through map-
pings. Mappings convey the widgets rationale (the tasks they support) as well as the
UI deployment among the set of available platforms [4]. So far, MDE has been
widely explored for the forward generation of standardized UIs.

Façade [16] investigates another approach: the adaptation is performed at the win-
dows manager level. Adaptation is fully driven by the end-user who can dynamically
copy/paste/replace parts of the UI. Façade is limited to graphical UIs. It relies on the
widgets toolkit for the introspection mechanisms and the set of available widgets. As
in practice none of these toolkits reaches the task level, adaptation can not be per-
formed at a high level of abstraction (task or dialog).

Table 1. Analysis of the state of the art with regard to our four requirements

Levels of
abstraction

Technological
coverage

Extensibility Controllability

MDE [2,7,9] All Multiple Hard Depends on the
underlying

infrastructure
Windows
manager [16]

CUI/FUI Graphics Irrelevant End-user

ACE [11] ~Task C++ toolkit Easy Designer
WAHID [10] CUI MFC Hard System
XFORMS ~Task/AUI Web Impossible System with the

help of the designer
FRUIT [12] ~Task Depend on

shells
Impossible System

Multimodal
Widgets [6]

~Task Java/SWING ? System with the
help of the designer

Ubiquitous
interactor [14]

~Task Depends on
interpreters

Impossible System and
designer

User Interface: a
Graph of COMETs

UIs broker : a
Semantic network

Transformation/
Style rules

instantiates

applies on

instantiates
uses

228 A. Demeure, G. Calvary, and K. Coninx

Widget toolkits have already extensively been explored. They tackle specific plas-
ticity issues such as multimodality [6,12], polymorphism [10,11,14], or post-WIMP
UIs [13]. None of these covers the tasks operators: sequence, interleaving, or opera-
tor, and so on [15]. As a result, all the transformations changing the way the naviga-
tion is rendered are lost (Fig.1) (e.g., switching from a menu to hyperlinks, tabbed
panes, blanks or separators). In addition, only some approaches [11] support extensi-
bility easily. Presentations are mostly mono-technological, and adaptation is neither
foreseeable nor controllable.

Table 1 summarizes the state of the art with regard to the four abovementioned re-
quirements. It shows that mixing MDE and widget toolkits may be promising for
meeting all the requirements. This is the core principle of COMET(s).

3 CamNote++, A Running Demonstrator of COMET(s)

CamNote++ is a presentation software (like PowerPoint) that can be used by two
kinds of users: speakers and spectators. CamNote++ is capable of adaptating to the
screen size and takes into account hardware capabilities such as graphical hardware
acceleration. Therefore, CamNote++ can be considered plastic with regard to the
platform dimension of the context of use. CamNote++ is built with COMETs imple-
mented in TCL. It can be rendered using several technologies according to the user’s
platform. For instance, if the user accesses CamNote++ via a web browser then
AJAX/HTML is used. Both WIMP (e.g. form-based UIs) and/or post-WIMP UIs (e.g.
multiple interaction points and speech UIs) can be used to render the application and
interact with it. WIMP UIs rely on standard widgets available on the platform
whereas post-WIMP UIs make use of toolkits such as OpenGL or Microsoft SAPI
when available. WIMP and post-WIMP renderings can be used simultaneously.

From the end-user’s perspective, CamNote++ first requires the user to log in (Iden-
tify task). The following tasks depend on the user’s role: either speaker or spectator.
In both cases, the current slide is rendered to the user. Two modes are available: pres-
entation mode and question mode. The question mode corresponds to the case where
the speaker is interrupted by someone for asking a question. In the presentation mode,
only the speaker can control the viewer. In the question mode, spectators can also
browse the slides using a dedicated controller. This is useful for supporting questions
such as “In slide N, what do you mean by …?”.

Fig. 3-1 shows CamNote++ in action for a speaker using a PC. The rendering is
post-WIMP. At the beginning (A), CamNote++ is not operating in full screen mode:
two windows are displayed to show both the current slide and the slides controller.
When the speaker activates the full screen mode, the slide controller smoothly merges
with the current slide (B) until being completely embedded in the slide (C). A picture
of a keyboard is faded in and out (C) to make the user aware that he/she can now
control the slide viewer using the physical keyboard (D). The keyboard controller is
retrieved in the semantic network (a description of this approach is beyond the pur-
pose of this paper).

Fig. 3-2 shows the web version of CamNote++ for a remote watcher. The current
slide is updated using AJAX. In A, no style sheet is applied: the slide controller (in the
upper part of the window) is composed of buttons and a dropdown menu for setting the

 COMET(s), A Software Architecture Style and an Interactors Toolkit 229

current slide number. The current slide is displayed just beneath. An input field is placed
at the bottom of the window to support taking notes. In B, a style sheet (specified by the
designer) is applied for both improving the grouping (black boxes are added to better
delimit workspaces) and for expanding the text area. In C, a tailored presentation is
preferred for the slide controller: its container is a moveable translucent window. In D,
the user’s tasks (controlling the slides, perceiving the current slide and taking notes) are
not directly observable in this case: they are browsable through tabbed panes. Style
sheets (i.e., transformations) are not described in detail in this paper.

A D

1)

2)

A B C D

CB

Fig. 3. 1) The OpenGL-based post-WIMP version of CamNote++ for the speaker. 2) The
AJAX/HTML versions of CamNote++ for a spectator.

The next section describes the cornerstone of the toolkit: the COMET architectural
style.

4 The COMET Style

COMET is driven by three principles: (1) Separation of concerns, (2) Reuse of exist-
ing toolkits (e.g., AJAX/HTML, TK, vocal, OpenGL), and (3) Recursivity so that a
COMET can recursively be composed of COMETs.

This section describes the architectural style: first, the structure, then the event
propagation. Finally we show how engineering interactive systems takes place when
using COMET.

4.1 Structure

A COMET is composed of three facets. Each of them is responsible of one specific
concern (Separation of concerns principle):

• A Logical Consistency (LC) represents the user’s task (e.g., control the slides) or
the task operator (e.g., interleaving) that the COMET supports. It denotes the seman-
tics of the service that the COMET provides. The semantics gives rise to a specific
API, called semantic API (e.g., next slide, previous slide...). The LC is associated to
one or many Logical Models (LM). If many, LC is in charge of maintaining consis-
tency between these LMs.

230 A. Demeure, G. Calvary, and K. Coninx

• A Logical Model (LM) is in charge of a specific concern related to the realization
of the semantics. Usually, a distinction is made between the presentation and the
abstraction (i.e., functional core). Whatever the concern is, each LM has to implement
the semantic API of the corresponding LC (e.g., next slide...): this semantic API is the
language that LC and LM share. The API can be extended to take into account spe-
cific concerns (e.g., blurring the slide). In turn, a LM is associated to one or many
Physical Models (PM). If many, LM is in charge of maintaining consistency between
these PMs. It also provides PM factories for instantiating PMs on the fly.

• A Physical Model (PM) is a specific means for realizing a LM. A presentation PM
encapsulates the code of primitive toolkits such as OpenGL, HTML, SAPI, etc. (Re-
use principle). A functional PM would encapsulate network protocols (e.g., AIM,
MSN, YAHOO, IRC, etc.) in case of a Chat COMET. Encapsulated codes are called
technological primitives. A PM has to implement its LM semantic API: this API is the
shared language. A PM also describes the context of use it requires (e.g. JAVA,
screen size, etc.).

LC, LM and PM are called nodes. Nodes can be tagged with decorations. For in-
stance, a LC can be tagged as being frequent or critic according to the task decora-
tions in the task model. A LM can be tagged with the concern it is in charge of (e.g.,
presentation). A PM can be tagged with the interaction path length it requires for
achieving the task. Fig. 4 depicts the COMET architecture style as an UML class
diagram (A) and in a dedicated graphical representation (B).

Constraints ensure that a node can only be plugged with compatible ones: LCs
with LCs, LMs with LMs, PMs with technological compatible PMs (e.g. HTML
presentations).

LC
LM

L_fact : list of PM factories PM

* nested_leaf

* nested

* nested_root
* childs

* parents

NODE
nb_max_daughters : integer
nb_max_mothers : integer
L_tags : list of strings

1 * 1 *

LC : Logical Consistency.
LM : Logical Model.
PM : Physical Model.

LC

LM LM

A) B)

PM

ContextOfUse
ptf_soft : PTF_SOFT
ptf_hard : PTF_HARD

…

1 1

PTF_SOFT: Software platform description
PTF_HARD: Hardware platform description

Fig. 4. The COMET architectural style: A) A UML class diagram. B) A dedicated graphical
representation.

In the following we take the CamNote++ “Remote Controller” COMET as an ex-

ample. Several presentations can be envisioned (Fig. 5-A) using different technolo-
gies: vocal, web, post WIMP, etc. Each presentation gives rise to a specific presenta-
tion PM. From a functional point of view, the controller can convey commands using
different network protocols (Fig. 5-B).

 COMET(s), A Software Architecture Style and an Interactors Toolkit 231

A) B)

Controller

IP
Bluetooth
Infra-red

vocal
web
OpenGL

Abstraction Presentation

PMs LM LC PMs LM

Fig. 5. A) Few presentations for the Remote Controller COMET. B) A graphical representation
of the Remote Controller COMET.

Consistency among the different facets is ensured by a communication mechanism
based on event propagation.

4.2 Events Propagation Inside a COMET

Events may be fired by two sources: either by a program that calls a COMET’s func-
tion (e.g. set the current slide number) via its LC (Fig. 6-A) or by the user interacting
with a PM (e.g. via the OpenGL presentation of the CamNote++ slides controller)
thus triggering an event (Fig. 6-B). Each time an event is triggered, it is propagated
along the COMET to the other facets in order to ensure consistency (Fig. 6). Ensuring
consistency among presentation PMs can be seen as a multimodality issue if presenta-
tion PMs are seen as interaction modalities and multimodality as a combination of
modalities.

The CARE properties [5] provide a framework for reasoning about the combina-
tion of modalities. Only Redundancy and Equivalence are addressed yet in COMET.
Assignment is out of scope of our work presented in this paper. Complementarity as
defined in the “put that there” paradigm [1] goes far beyond our work. Only basic
forms of complementarity are covered up until now: (1) Input complementarity of
modalities is used to achieve an elementary task. For instance, the task “Specify text”
is achieved by alternatively using a keyboard-based and a voice-based PM. COMET
supports this by design. (2) Input complementarity of modalities to achieve composed
tasks (e.g. typing text and changing its colour). It is possible to use different modali-
ties for the different sub-tasks. Again, COMET supports this by design. (3) Finally,
output complementarity is achieved by using several PMs for a presentation LM.

To support Redundancy (R) and Equivalence (E), we have defined a domain spe-
cific language: COMET/RE (R for Redundancy and E for Equivalence). The idea is to
associate a COMET/RE sentence to each function of the semantic API of a presenta-
tion LM. These sentences specify the way events must be processed. For instance,
“R(E(gfx), E(vocal))” associated to the function F (e.g. switch to diaporama mode)
means that the call of F has to be propagated to the LC if and only if one graphical
PM (gfx) and one vocal PM (vocal) at least (E) are used in a redundant way (R). In
case of redundancy, the propagation to the LC is conditioned by the activation of the
corresponding PMs. In case of equivalence, the propagation to the LC is done as soon
as an equivalent PM is activated. Fig. 6-B illustrates the COMET/RE sentence “E(*)”:
it means that all PMs (*) are equivalent (E) for F.

The next subsection elaborates on interactive systems as graphs of COMETs.

232 A. Demeure, G. Calvary, and K. Coninx

1

2
3

3 3

3

3 3

3

3

3

3

2

3

4
5

5 5

5

5 5

5

5

5

1

2

A) B)

4

5

Fig. 6. Propagation of events (arrows) inside a COMET. Numbers represent the calls ordering.
A) Propagation starting from the LC. B) Propagation starting from a PM. The propagation from
2 to 3 depends on the evaluation of the associated COMET/RE sentence.

4.3 Graphs of COMETs

Using COMETs, an interactive system is a graph of COMETs. More precisely, there
are three types of interconnected graphs: a graph of LCs, a graph of presentation LMs
and a set of graphs of presentation PMs, one per PM rendering technology (TK,
OpenGL, etc.) as for instance a TK PM can only be rendered inside another TK PM.
In all the graphs, the “parent-child” relation has the same meaning: the child
expresses itself with regard to its parent (e.g. a PM child is rendered in the PM
parent).

Consider CamNote++ for example. Fig. 7-A depicts the graph of COMETs for
the spectator’s UI: a text specifyer (to take notes), a slide controller and a slide
viewer are interleaved. All the LCs are linked together in a graph. All the presenta-
tion LMs are linked together in another graph. All the presentation PMs are linked
together in mono-technological graphs (one for TK, one for vocal, etc.). COMET
ensures the interconnection between these graphs. For readability, only the graph of
LCs is depicted in Fig. 7-A. Fig. 7-B shows the rendering of the AJAX/HTML-
based graph of PMs.

Fig. 7. A) Graph of COMETs for a spectator. B) A corresponding AJAX/HTML UI

Each node that contains a graph of COMETs (Recursivity principle) is said to be
composite by opposition with atomic nodes (which do not contain a graph). Fig. 8
illustrates how recursivity is used in the CamNote++ COMET. The LC part of the
COMET is composed of COMETs that correspond to the different roles (speaker or
spectator) of CamNote++ users. All the COMETs (speaker or spectator) share a same
COMET slides viewer, thus ensuring the slides synchronisation among users. Besides
the recursivity in the LC, there is a recursivity of presentation PMs. Each PM of

Interleaving

Text
Specifyer

Slides Con-
troller

Slides
Viewer

A) B)

 COMET(s), A Software Architecture Style and an Interactors Toolkit 233

CamNote++

CN_Speaker

CN_Viewer

CN_Spect. CN_Spect.
…

Sequence

Log Container

Associated
role Activator

(deconnect)

Fig. 8. The CamNote++ COMET. The composite PM is in charge of log in the user to the right
role (speaker or spectator). The composite LC manages the different roles (modeled with dedi-
cated COMETs). All the roles share a same COMET slides viewer.

CamNote++ is in charge of identifying the user and setting his/her role. In practice,
each time a user accesses CamNote++ by mean of a new UI (e.g. when opening a web
browser), he/she is asked to identify his/herself so that CamNote++ can display the
right UI (speaker or spectator).

There is no straightforward rule to know when and how to use composite nodes.
It is up to the designer to decide about using this feature. However, we can say that
task decomposition is likely to be translated into a composite LC; workspaces or-
ganisation is likely to be translated into a composite presentation LM, and widgets
decomposition is likely to be translated into a composite presentation PM. As
shown in Fig. 8, a composite PM can also be used to manage access to a COMET
for different users.

In practice, designers only have to specify the graph of LCs. The presentation
LM graph (respectively PM graph) is automatically generated according to the LC
graph (respectively LM graph). The graph of PMs is built with respect to the con-
text of use: an AJAX/HTML PM is plugged into AJAX/HTML compatible PMs.
Note that graphs of presentation LMs and PMs are automatically generated. In-
deed, COMETs always contain presentation facets. This is not the case for other
facets such as abstraction.

5 Developing with COMETs

This section puts the COMET style in action. Three kinds of requirements are consid-
ered to show how COMET can be used for tuning CamNote++ and target additional
contexts of use.

5.1 Distributing the Slides Controller on a PDA

Imagine the designer decides to distribute CamNote++ (for the speaker role) on a PC
and a PDA: the Slides Viewer on the PC using OpenGL; the Slides Controller on the
PDA using HTML. To do this, the designer only needs to plug an OpenGL and an

234 A. Demeure, G. Calvary, and K. Coninx

Fig. 9. Graph of COMETs corresponding to CamNote++ rendered in OpenGL and HTML.
Links (arrows) between presentation PMs are automatically generated based on the LC links.

HTML PM to the COMET Root which expresses that the graph of COMETs will be
rendered using these two technologies (Fig. 9).

Once the graph (Fig. 9) is built, the designer configures the presentations to be ren-
dered. For instance, he/she specifies that the HTML Slides Controller has to fit the
web page. This can be done using a style/transformation rule that, if necessary, calls
the semantic network for retrieving presentations. Fig.10 provides an example without
any detail about the syntax. The example (A) asks for replacing the HTML slides
controller with a skinable version (B) to be retrieved in the semantic network.

Fig. 10. A) A transformation rule for substituting the HTML presentation of the Speaker’s
Slides Controller by the one shown in B

5.2 Requiring Redundancy for Switching the Presentation Mode

Imagine switching between full screen and window-based modes appears to be a critical
task. Requiring redundancy for changing the mode may be an option to prevent the user
from making errors,. In that case, the speaker has to ask for a switch using both the
HTML and OpenGL UIs. Such a modification can simply be done using a single trans-
formation rule (Fig. 11). This rule specifies that the mode activator COMET can only be
activated if both the OpenGL and HTML presentations are activated in the same tempo-
ral window of 2000 milliseconds.

Fig. 11. A transformation rule for requiring redundancy between OpenGL and HTML presenta-
tions when switching between full screen and window-based modes

#CN_Speaker(Activator.DIAPORAMA->_LM_LP) {
 COMET_RE_expr : activate R(2000,E(HTML),E(OpenGL)) ;
}

#CN_Speaker->PMs[soft_type == HTML](SlideController) {
 type : SlideController_CUI_skinnable;
 }

A) B)

Root

OpenGL
HTML

OpenGL
HTMLCamNote++

 COMET(s), A Software Architecture Style and an Interactors Toolkit 235

5.3 Integrating the Pixels Mirror Feature into the OpenGL Slides Viewer

Imagine the designer decides to include a pixels mirror when possible (i.e., in case a
camera is connected to the PC). Using COMET, this is achieved either at design time
or at runtime by (1) encapsulating the OpenGL “Slides Viewer” presentation PM into
a composite PM, adding a Video COMET in charge of displaying the camera images,
and adding an integer Choice COMET to set the translucence level of the video (first
rule in Fig. 12-A, “Eval : U_encapsulator_PM $obj “Container(, \$core, Video(),
ChoiceN(set_range \"0 100\"))”;”). Then (2) the COMET choice is linked to the
video OpenGL presentation PM so that every time a new value is set, the translucence
level is updated accordingly (second rule of Fig. 12-A, an Event Condition Action is
defined by “ECA : set_current, true, set video [CSS++ “#CN_Speaker-
>PMs[type==OpenGL] CN_Viewer(Video)“] --- $video set_translucidity [expr
$value / 100.0];”). Finally, the last two rules express how the presentations are laid
out. Fig. 12-B graphically describes the COMET Slide Viewer before and after apply-
ing the rules.

PM
Viewer

CN_Viewer

Video

Container

Generated
LC

PM
Viewer Choice of

integer

CN_Viewer

PM encapsulator

#CN_Speaker->PMs[type==OpenGL] CN_Viewer {
 Eval : U_encapsulator_PM $obj “Container(, \$core, Video(), ChoiceN(set_range \"0 100\"))”;
}
#CN_Speaker->PMs[type==OpenGL] CN_Viewer(ChoiceN) {
 ECA : set_current, true
 , set video [CSS++ “#CN_Speaker->PMs[type==OpenGL] CN_Viewer(Video)“] ---
 $video set_translucidity [expr $value / 100.0];
}
#CN_Speaker->PMs[type==OpenGL] CN_Viewer(Container, Video) {
 Layout : Fit_parent;
}
#CN_Speaker->PMs[type==OpenGL] CN_Viewer(ChoiceN) {
 Type : Slider;
 Layout : Bottom;
}

B)

Encapsulation

A)

Fig. 12. Four transformation rules, a dozen of lines of code to integrate the pixels mirror feature
in CamNote++

6 Conclusion and Future Work

In this paper, we present COMET, a new software architecture style specially crafted
for plasticity. COMET bridges the gap between two main research areas in plasticity:

236 A. Demeure, G. Calvary, and K. Coninx

MDE and interactors toolkits. COMET meets four main requirements that had never
been simultaneously satisfied so far. The four levels of abstraction and the multi ren-
dering feature are ensured by design concepts: tasks-concepts, AUI, CUI and FUI are
respectively embodied in LCs, presentation LMs, PMs and technological primitives.
Technological primitives target different languages and toolkits in a non exclusive
way. Extensibility and controllability are satisfied with two additional tools (not de-
scribed in this paper): style sheets for specifying transformations, and a semantic
network for retrieving existing UI elements.

The COMET style has been implemented in TCL giving rise to a COMETs toolkit
that contains classical interactors (e.g., select one option among N) as well as more
innovative ones in charge of task operators (e.g., interleaving, sequence). Each interac-
tor can be polymorphic including exotic custom-made presentations. In turn, the COM-
ETs toolkit has been used for implementing CamNote++, an executable plastic presen-
tation software that illustrates the architecture and concepts proposed in this paper. We
show the powerful COMET capabilities for extending and tuning UIs, and for exploring
design alternatives. This can be done both at design time and at run time.

In the future, we aim at exploring UIs for visualizing and transforming COMETs at
runtime. We keep in mind the difficult issue of evaluating the architecture model and
the toolkit. Using the proposed approach in teaching situations could provide an initial
evaluation.

Videos are available at http://iihm.imag.fr/demeure/.

Acknowledgments. Part of the research has been funded by the SIMILAR European
network and ERDF (European Regional Development Fund), the Flemish
Government and the Flemish Interdisciplinary institute for BroadBand Technology
(IBBT).

References

1. Bolt, R.A.: “Put-That-There”: Voice and Gesture at the Graphics Interface. Computer
Graphics 14(3), 262–270 (1980)

2. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting With
Computers 15/3, 289–308 (2003)

3. Calvary, G., Coutaz, J., Dâassi, O., Balme, L., Demeure, A.: Towards a New Generation
of Widgets for Supporting Software Plasticity: The ”Comet”. In: Bastide, R., Palanque, P.,
Roth, J. (eds.) DSV-IS 2004 and EHCI 2004. LNCS, vol. 3425, pp. 306–324. Springer,
Heidelberg (2005)

4. Clerckx, T., Luyten, K., Coninx, K.: The mapping problem back and forth: customizing
dynamic models while preserving consistency. In: Proceedings of the 3rd Annual
Conference on Task Models and Diagrams, TAMODIA 2004, November 15 - 16, 2004,
vol. 86, pp. 33–42. ACM Press, New York (2004)

5. Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., Young, R.: Four Easy Pieces for
Assessing the Usability of Multimodal Interaction: The CARE properties. In: Arnesen,
S.A., Gilmore, D. (eds.) Proceedings of the INTERACT 1995 conference, June 1995, pp.
115–120. Chapman&Hall Publ., Lillehammer (1995)

 COMET(s), A Software Architecture Style and an Interactors Toolkit 237

6. Crease, M., Brewster, S.A., Gray, P.: Caring, sharing widgets: a toolkit of sensitive
widgets. In: 14th Annual Conference of the British HCI Group, Sunderland, England,
September 5-8, 2000. British Computer Society conference series, pp. 257–270 (2000)

7. da Silva, P.: User Interface Declarative Models and Development Environments: A
Survey. In: Palanque, P., Paternó, F. (eds.) DSV-IS 2000. LNCS, vol. 1946, pp. 207–226.
Springer, Heidelberg (2001)

8. Demeure, A., Calvary, G., Coutaz, J., Vanderdonckt, J.: The COMETs Inspector: Towards
Run Time Plasticity Control Based on a Semantic Network. In: Coninx, K., Luyten, K.,
Schneider, K.A. (eds.) TAMODIA 2006. LNCS, vol. 4385. Springer, Heidelberg (2007)

9. Gajos, K., Weld, D.: Preference elicitation for interface optimization. In: UIST 2005:
Proceedings of the 18th annual ACM symposium on User interface software and
technology, Seattle, WA, USA, pp. 173–182 (2005)

10. Jabarin, B., Graham, N.: Architectures for Widget-Based Plasticity. In: Jorge, J.A., Jardim
Nunes, N., Falcão e Cunha, J. (eds.) DSV-IS 2003. LNCS, vol. 2844, pp. 124–138.
Springer, Heidelberg (2003)

11. Johnson, J.: Selectors: going beyond user-interface widgets. In: CHI 1992: Proceedings of
the SIGCHI conference on Human factors in computing systems, pp. 273–279 (1992)

12. Kawai, S., Aida, H., Saito, T.: Designing interface toolkit with dynamic selectable modality.
In: Proceedings of the Second Annual ACM Conference on Assistive Technologies Assets
1996, April 11 - 12, 1996, pp. 72–79. ACM Press, New York (1996)

13. Lecolinet, E.: A molecular architecture for creating advanced GUIs. In: Proceedings of the
16th Annual ACM Symposium on User interface Software and Technology UIST 2003,
November 02 - 05, 2003, pp. 135–144. ACM Press, New York (2003)

14. Nylander, S., Bylund, M., Waern, A.: The Ubiquitous Interactor – Device Independent
Access to Mobile Services. In: Proc. of 5th Int. Conf. of Computer-Aided Design of User
Interfaces CADUI 2004, January 13-16, 2004, pp. 269–280. Kluwer Academics,
Dordrecht (2005)

15. Paterno’, F., Mancini, C., Meniconi, S.,, C.: A Diagrammatic Notation for Specifying Task
Models. In: Proceedings Interact 1997, Sydney, pp. 362–369. Chapman & Hall, Boca
Raton (1997)

16. Stuerzlinger, W., Chapuis, O., Phillips, D., Roussel., N.: User Interface Façades: Towards
Fully Adaptable User Interfaces. In: Proceedings of UIST 2006, October 2006, pp. 309–
318. ACM Press, New York (2006)

17. Thevenin, D., Coutaz, J.: Plasticity of User Interfaces: Framework and Research Agenda.
In: Edinburgh, A.S., Johnson, C. (eds.) Proc. Interact 1999, pp. 110–117. IFIP IOS Press
Publ., Amsterdam (1999)

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 238 – 251, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Executable Models for Human-Computer Interaction

Marco Blumendorf, Grzegorz Lehmann, Sebastian Feuerstack, and Sahin Albayrak

DAI-Labor, TU-Berlin
Ernst-Reuter-Platz 7, D-10587 Berlin

firstname.lastname@DAI-Labor.de

Abstract. Model-based user interface development is grounded on the idea to
utilize models at design time to derive user interfaces from the modeled infor-
mation. There is however an increasing demand for user interfaces that adapt to
the context of use at runtime. The shift from design time to runtime means, that
different design decisions are postponed until runtime. Utilizing user interface
models at runtime provides a possibility to utilize the same basis of information
for these postponed decisions. The approach we are following goes even one
step further. Instead of only postponing several design decisions, we aim at the
utilization of stateful and executable models at runtime to completely express
the user interaction and the user interface logic in a model-based way.

Keywords: human-computer interaction, model-based user interfaces, runtime
interpretation.

1 Introduction

Model-based software development is becoming more and more popular these days
and has been identified as suitable to deal with the increasing complexity of software
systems developers have to cope with. While UML made the idea of modeling popu-
lar by providing a common language to exchange concepts between developers, the
Meta-Object Facility (MOF) and the Model-Driven Architecture (MDA) of the Object
Management Group (OMG) provide the key concepts for the widespread utilization of
model-based software engineering. However, with the advent of technologies like
UML Actions or the Business Process Modeling Language (BPML) the focus of the
modeling approaches shifts from static systems to dynamic systems and executable
models. While the original static models were mainly able to present snapshot views
of the systems under study and could thus only provide answers to “what is” kinds of
questions, dynamic models give access to information that changes over time and are
thus also able to answer “what has been” or “what if” kinds of questions (see also
[4]). Executable models support this approach by providing the logic that defines the
dynamic behavior as part of the model. Their structure will be explained in more
detail in the remainder of this paper.

The ability to model complex software systems has recently also regained more at-
tention as a technology capable of handling the increasing complexity of user inter-
faces (UIs). Rising demands for dynamic UIs that adapt to the context-of-use and thus
user preferences, multiple devices, the surrounding environment or even multiple

 Executable Models for Human-Computer Interaction 239

modalities, induce the need for new ways to express such characteristics. Model-
based approaches as described in [14, 11] address these challenges by utilizing mod-
els to support the user interface development process and provide the means to derive
multiple consistent user interfaces from a (sometimes multi-level) UI model. Addi-
tionally approaches that utilize UI models at runtime [7, 10] addressed specific devel-
opment issues. There is however still the lack of a well accepted common User Inter-
face Description Language (UIDL) as different approaches focus on different aspects.
UsiXML currently seems to be the most feasible candidate for such a language.

In this paper we present an approach that facilitates the development of User Inter-
face Management Systems that address:

• supporting different UIDLs and models by introducing a common meta-layer
• the consideration of the predictive as well as the effective context of use [5]
• the specification of syntax and semantics as part of a model
• support for the easy extension of systems based on the coupling of multiple

models
• the unification of design models and the runtime data structures of interactive

systems

The model-based approach we describe in the following therefore facilitates the
utilization of “executable” user interface models at runtime. Although we propose a
set of models, the general system allows the utilization of various UIDLs on different
levels of abstraction. The approach therefore addresses the definition of a meta-meta-
model providing building blocks for meta-models that also contain the model seman-
tics. Furthermore the system allows the developer to monitor, maintain, manipulate
and extend interactive applications at runtime and thus manage the continuously
changing requirements of user interface development.

After introducing the current state of the art in the next section, we give an intro-
duction to the idea of executable models, providing the possibility to combine syntax
and semantic with state information to support direct model execution. Next we pre-
sent a meta-meta-model, distinguishing definition-, situation- and execution parts our
executable models are comprised of. Following that section, we give an overview of
the meta-models and the mapping meta-model we utilize for the UI development and
the underlying concepts. We then introduce the architecture of our runtime system
and elaborate on the possible applications of the approach. We describe how the de-
velopment process can be supported by the ability to directly modify the models at
runtime using Eclipse and EMF, which also allows runtime inspection, modification
and debugging of the models.

2 State of the Art

The recent shift towards model-based software development aims at solutions to cope
with the increasing complexity of current and future systems. While UML made the
idea of modeling popular by providing a common language to exchange concepts
between developers, MOF and MDA provide the key concepts for the utilization of
model-based software engineering. Technologies like Executable UML, UML Ac-
tions or BPML focus on the shift from static- to dynamic systems and executable

240 M. Blumendorf et al.

models. These developments also influence user interface research. The current state
of the art in model-based user interface development shows the need for a common
language [11] and a tendency towards a common understanding of the new challenges
and approaches [2, 1]. However, there are also approaches to build architectures, tools
and methodologies to support the designer during the development as well as the
creation of adaptive user interfaces and their adaptation at runtime. [10] for example
deals with the execution of CTT-based user interface models and [7] presents a run-
time system that targets the creation of context-aware user interfaces.

Sottet et al. [19] propose keeping the models alive at runtime to make the design
rationale available. This means, that the final UI code should not be generated at de-
sign-time, but at runtime, taking the context adaptations into account. Demeure et al.
[8] presented the Comets, which are prototypical user interface components capable
of adaptations due to the application of models at runtime. Preserving the models at
runtime opened the possibility for the implementation of plasticity-enabling features
like their Meta-UI. Yet, the black-box nature of the Comets seems problematic at
runtime, as the system has no indications about a Comet’s inner state. Clerckx et al.
[6] extend the DynaMo-AID design process by context data evaluated at runtime,
supporting UI migration and distribution. Their approach allows the designer to de-
fine context-dependent information in the models. However, although the models are
then interpreted dynamically, their adaptation at runtime is not possible. To support
the linking of multiple models, Sottet et al. [20] propose to model transformations
which should also be available at runtime. However, none of the solutions we are
aware of enables to identify the common components of multiple models and links
between the models, which could pave the road to interoperability between different
UIDLs. In our approach, we utilize executable models to derive user interfaces at
runtime. We define a meta-meta-model and conceptually introduce a mapping meta-
model. This allows us to connect different models and concepts to build advanced
user interfaces.

3 Executable Models

Recent developments in the model-based user interface development community
show the increasing importance of models as a basis for development support and also
as basis at runtime. Currently there is still a focus on the usage of static models, pro-
viding (only) a snapshot of the system under study at a given point in time. Research
in model-driven engineering of user interfaces has brought up various approaches to
use models for the derivation of user interfaces for different purposes. However, fu-
ture interactive systems are required to adapt to different contexts at runtime and thus
deriving multiple UIs at design time does not seem to be feasible anymore. Keeping
the model(s) at runtime allows postponing design decisions to runtime and thus per-
forming adaptations to the runtime circumstances rather than predicting all possible
context situations at design time. We think that the executable models approach intro-
duced in this section can support a more extensive usage of models at runtime. In
contrast to common static models, executable models provide the logic that defines
the dynamic behavior as part of the model, which makes them complete in the sense
that they have “everything required to produce a desired functionality of a single

 Executable Models for Human-Computer Interaction 241

problem domain” [12]. They provide the capabilities to express static elements as well
as behavior and evolution of the system in one single model. Executable models run
and have similar properties as program code. In contrast to code however, executable
models provide a domain-specific level of abstraction which greatly simplifies the
communication with the user or customer. Combining the idea of executable models
with dynamic elements as part of the model gives the model an observable and ma-
nipulable state. Besides the initial state of a system and the processing logic, dynamic
executable models also make the model elements that change over time explicit and
support the investigation of the state of the execution at any point in time. We can
thus describe dynamic executable models as models that provide a complete view of
the system under study over time.

3.1 A Meta-Meta-Model

Combining the initial state of the system, the dynamic model elements that change
over time and the processing logic in one model, leads to the need to clearly distin-
guish between the different elements. We thus distinguish between definition-, situa-
tion- and execution elements in the following. A similar classification has also been
identified by Breton and Bézivin [4].

Definition Elements define the static structure of the model and thus denote the con-
stant elements that do not change over time. Definition elements are defined by the
designer and represent the constants of the model, invariant over time.

Situation Elements define the current state of the model and thus identify those ele-
ments that do change over time. Situation elements are changed by the processing
logic of the application when making a transition from one state to another one. Any
change to a situation element can trigger an execution element.

Execution Elements define the interpretation process of the model, in other words
the transitions from one state to another. In this sense execution elements are proce-
dures or actions altering the situation elements of a model. Execution elements also
provide the entry points for data exchange with entities outside of the model. Defining
execution elements as part of the model allows the incorporation of semantic informa-
tion and the interpretation process as part of the model itself and thus ensures consis-
tency and an unambiguous interpretation. This approach makes an executable model
complete and self-contained.

Distinguishing these elements leads to the meta-meta-model of dynamic executable
models depicted in Fig. 1. The meta-meta-model provides a more formal view of execu-
table models and summarizes the common concepts the models are based on. It is posi-
tioned at M3 layer in the MOF Metadata Architecture [15] (see also Fig. 4). The clear
separation of the elements provides clear boundaries for the designer, only working with
the definition elements and the system architect, providing the meta-models. A defini-
tion element as the basic element finally aggregates situation- and execution elements
that describe and change situations for a given definition element. Using such models in
a prescriptive way (constructive rather than descriptive modeling) allows defining

242 M. Blumendorf et al.

Fig. 1. Meta-Meta-Model of Dynamic Executable Models

systems that evolve over time, reason about the past and predict future behavior. Dy-
namic models are often used to build self-adaptive applications, as for example Rohr et
al. [17] describe. In this context, the role of the models is often that of monitoring the
system. In the following we illustrate the implications of the meta-meta-model by intro-
ducing the realization of a CTT-based task-meta-model as executable meta-model using
the Eclipse Modeling Framework.

3.2 Modeling with EMF

For our current implementation we have utilized the Eclipse Modeling Framework
(EMF), which is a modeling and code generation framework integrated into the
Eclipse IDE. EMF provides means to define meta-models, create models and appro-
priate editors. Beyond that, for each meta-model EMF is capable of generating Java
class structures representing it. These can then be enriched by a programmer just as
usual Java code can. This way it is possible to add execution logic into the meta-
model in form of Java code fragments.
 ECore is the meta-model of EMF and thus the meta-meta-model of all models
defined in EMF. It resides on the same layer as the meta-meta-model of the executa-
ble models. Choosing EMF as the implementation technology makes it necessary to
map definition-, situation- and execution elements - the entities of our meta-meta-
model - to entities in the ECore meta-meta-model. In our approach, the definition
elements are represented by EClasses in ECore. The situation elements find their
representation in the ECore’s EStructuralFeatures although not all EStructuralFea-
tures are situation elements as some attributes of an element (EAttribute) may de-
scribe runtime state data. The differentiation is therefore done by the adoption of an
extra EAnnotation. Finally, the execution elements are in ECore expressed as EOpera-
tions, which allows adding execution logic into a meta-model in form of Java code
fragments. In Java the execution logic is defined within methods and these are repre-
sented by EOperations within ECore.

3.3 Executable Task Models

In the following we use the task model as an example to illustrate the executable
models, the usage of the meta-meta-model and the realization with EMF. The task
model we use is based on the CTT notation which is well known in model-based UI
development. Task models are also known to be executable [10] and define the tasks

 Executable Models for Human-Computer Interaction 243

the user has to accomplish and their temporal relations. They thus provide an over-
view of the workflow of the application. To be able to utilize the CTT-based task
model for our purposes we extended the static part of the CTT meta-model with the
state information needed to reflect the state of the execution in the model. We intro-
duce attributes for each task, identifying the state of the task and thus the situation
elements of the model.

Fig. 2. The Task-Meta-Model in EMF

Fig. 2 shows the EMF meta-model structure for task models. As one can see in the
graphic, every task model is comprised of a root task with a set of children tasks.
Each task is a definition element which also comprises situation elements. While
name, type, description, relation (temporal relation to neighbor task) and the iterative
flag are defined by the designer, state and suspended state (the last state before sus-
pension) are annotated as situation elements as they change over time. During execu-
tion at runtime - starting with the root task - the setNewState operation is used to
change the state of the task as well as all related child-tasks (according to their tempo-
ral relations). This allows to explicitly store the execution state of the model as part of
the model. During execution the Enabled Task Set (ETS) is derived and then each
task in this set is set to state “enabled”. Once the task is completed it is set to “done”.
Using this interpretation we distinguish InteractionIn (user input) and InteractionOut
(system output) and application tasks (backend call without user intervention) to
model the workflow of the application.

This example illustrates how the task model and its execution logic can be embed-
ded into a single executable model while keeping design time and runtime informa-
tion separate, but also making the runtime state of the model explicit.

3.4 Summary

The executable models introduced in this section support the creation of models that
define systems and their behavior over time, while also exposing all state information
for manipulation and inspection. The meta-meta-model of executable models de-
scribes the building blocks of such models. We exemplified this principle using ex-
ecutable task models.

Looking at current model-based approaches [2, 11] there is a clear trend to provide
multiple models for the different aspects (e.g. levels of abstractions) rather than a
single model. We introduce an approach, combining multiple models to create user
interfaces at runtime, in more detail in section 5. Such relations between models are

244 M. Blumendorf et al.

not reflected by the meta-meta-model, as executable models are first of all self-
contained to ensure executability. The next section thus introduces a mapping meta-
model, that allows to express the relations between multiple models. The model itself
is executable as well, and provides the required event hooks in the execution logic to
interconnect multiple models. The mapping meta-model is positioned on layer M2 of
the MOF architecture [15] (see also Fig. 4).

4 Mapping-Meta-Model

The mapping model connects multiple executable models and allows to define rela-
tions between their elements based on the structures given by the meta-meta-model.
The mappings defined in this model are the glue between the models of our multi-
model architecture. The mapping meta-model as well as the other related meta-
models is thereby located at M2 layer of the MOF architecture. Providing an extra
meta-model solely for mappings also enables to benefit from tool support and re-
moves the problem of mappings hard-coded into the architecture, as has been already
advised by Puerta and Eisenstein [16]. The mapping meta-model allows the definition
of the common nature of the mappings and helps ensuring extensibility and flexibility.
A mapping relates models by relating elements of the models whereas the models are
not aware of their relation. An example of a mapping meta-model, consisting of a
fixed set of predefined mapping types only, can also be found in UsiXML described
by Limbourg [11]. Sottet et al. [18] have defined a mapping meta-model, which can
also be used to describe transformations between model elements at runtime. How-
ever, in contrast to their approach we put a stronger focus on the specific situation at
runtime and the information exchange between dynamic models. Especially interest-
ing at runtime is the fact, that the relations can be utilized to keep models synchro-
nized and to transport information between two or more models. The information
provided by the mappings can be used to synchronize elements if the state of the
source elements changes. Mellor et al. [13] also see the main features of mappings as
construction (when the target model is created from the source model) and synchroni-
zation (when data from the source model is propagated into the existing target model).
Our mapping model contains mappings of the latter kind. Focusing on runtime as-
pects, we see a mapping as a possibility to alter an existing target model, based on
changes that happen to the related source model. In contrast to the most common
understanding of mappings the mappings we utilize do not transform a model into
another one. Instead, they synchronize runtime data between coexisting models. Map-
pings connect definition elements of different models with each other. They are al-
ways triggered by situation elements and activate execution elements.

The conceptual mapping meta-model is provided in Fig. 3 and combines mapping
types and mappings. Mapping types are the main elements of the mapping meta-
model, as they provide predefined types of mappings that can be used to define the
actual mappings between elements on M1 layer. A mapping type thereby consists of
two definition elements as well as of well-defined links between the two. The defini-
tion elements are the source and the target of the mapping and the mapping synchro-
nizes the runtime data between these two elements. The links consist of a situation

 Executable Models for Human-Computer Interaction 245

UI Architect Access

UI Designer Access

Mapping

Model

Transformation

targetToSource

Mapping
typeDefinition

Element

Mapping

Type

Execution

Element

trigger targetSituation

Element
Link

sourceToTarget

Model

Element

sourceType

targetType

source

target

Fig. 3. Mapping Meta-Model

element, an execution element and a transformation. The situation element is the
trigger of a link. Whenever a situation element in a model changes, the link is trig-
gered and the referenced execution logic is executed to synchronize the two definition
elements of the mapping. The execution logic is thus the logical target of the link. The
optional transformation associated with the link describes how the situation data,
which activated the trigger, is transformed into (input) data needed by the target exe-
cution element in the other model. This transformation might be required, especially
when models with distinct data types and structures are linked by mappings. To sim-
plify the usage of the model, the meta-model supports multiple links in one mapping
type, as multiple situation elements (e.g. related to the same definition element) might
be relevant to trigger the execution. Supporting more than one link also allows a back
linking, as some mapping types might also demand two-way links.

From the designer’s point of view, the initial mapping model now provides a set of
available mapping types with predefined logic, defined on the meta-model level. Thus
to relate two models, the user interface designer extends this initial model by creating
new mappings that reference one of the available mapping types. To create such a
mapping, the designer has to provide the specific source and target model elements to
the mapping and define its type. This leads to a relation between the two elements and
their synchronization according to the given execution logic.

Using our meta-meta-model we were able to define the mapping meta-model inde-
pendent from the concrete meta-models that mappings can be created between. Only
the mapping models contain mapping types, which are not of generic nature, but spe-
cifically designed for the given meta-models.

4.1 Modeling Mappings with EMF

The EMF implementation of the mappings basically reflects the meta-model illus-
trated in Fig. 3 and also conforms to the described meta-meta-model of the executable
models. The main principle behind the realization of the mapping model with EMF is
the ability of EMF to include and reference a model within another model. This

246 M. Blumendorf et al.

feature allows us to create standard mappings that refer to the meta-models of the
system to design. Once a UI developer creates models according to these meta-
models, the pre-defined mappings can directly be used to relate dedicated model ele-
ments and thus easily provide the necessary information exchange.

Our implementation of the mapping meta-model is derived from the mapping of our
meta-meta-model with the ECore meta-meta-model as introduced in section 3.2. This
way it is possible to define mapping types on top of any executable ECore meta-model
(M2) used within our architecture. The mappings use the mapping types to connect M1
entities and thus reference EObjects. The mapping type of a mapping defines what links
it contains, whereas each link may be triggered by a different situation element. In our
implementation we made use of the eventing mechanism provided by EMF in the gen-
erated Java code. It enables to register so called adapters to every EObject. These adapt-
ers become notified about any occurrence within the model element. Every received
notification contains the information about the EStructuralFeature (situation element),
which has undergone a change, its new and previous values. In our prototyping phase
we have developed a simple transformation language which we then used to define the
transformation elements. Currently we are working on the integration of the ATLAS
Transformation Language (ATL)1 into the mapping meta-model. After a link has been
triggered and the transformation produced new data for the target model the Java
method denoted by the EOperation of the execution element is invoked. For this pur-
pose we utilize the reflection mechanisms of the Java language.

5 The Multi-access Service Platform (v2)

Based on the concepts of executable models and the mappings, we rebuild our previ-
ously developed Multi-Access Service Platform (MASP). The MASP is a UIMS that
allows the creation of multimodal user interfaces by interpreting models at runtime.
We are currently using the system to build adaptive multimodal interfaces for smart
home environments as part of the Service Centric Home project2. Utilizing executable
models as the underlying concepts for the approach lead to a complete redesign of the
system. Based on the meta-meta-models and the mapping (meta-) model we selected a
set of models to represent the workflow and the interaction with the application as
well as context and backend services (Fig. 5). The selection and design of the models
was also influenced by UsiXML models and the Cameleon reference framework,
although we decided to go with a slightly adapted syntax in the first step. Fig. 4 shows
the components of the MASP in relation to the MOF Meta Pyramid. M1 thereby
comprises the loosely coupled models while M2 provides the underlying meta-
models. On M2 we also introduced the MASP Core meta-model which provides the
means to initially load applications (sets of models) and trigger the execution. The
Model contains sessions for the user and application management. Additionally it
provides a basic API to access the models, making it easy to build software and man-
agement tools for the platform. Besides the models and their execution logic, the

1 http://www.eclipse.org/m2m/atl/
2 www.sercho.de

 Executable Models for Human-Computer Interaction 247

Fig. 4. The MASP in Relation to the MOF Meta-Pyramid

MASP comprises a channel-based delivery mechanism for the delivery of the created
final user interfaces to the interaction devices [3] and integrates several sensors (e.g.
an Ubisense ultra wide band localization system) for context recognition.

Fig. 5 shows the models we are currently using to develop applications for our ap-
proach. The task model defines the temporal relations between the multiple tasks of
the application and can thus serve as outline for the interaction. A domain model
completes the task model by providing content to the tasks. The model itself on the
one hand defines the data structures we are dealing with, but also holds instances of
these structures, objects, that become accessible at runtime. The life-time of these
objects is determined by the task model again, which also references the objects in the
designated tasks [9]. Altering the content of the domain model happens in two ways.
On the one hand there are backend services that provide information. These services
are on the highest level referenced by the task model in terms of application tasks [9].
A specific description of the service call itself and the referenced objects is provided
by a service model. Thus application tasks are mapped to service calls in the service
model via the appropriate mappings. The other possibility for new or modified con-
tent is the user entering or changing information while interacting with the system.
This is realized by the interaction model, related to interaction tasks. Here we distin-
guish input and output tasks which each identify the interaction on the highest level of
abstraction. A reification of the interaction in terms of details is then provided by the
interaction model that comprises an abstract interaction description, which is modality
independent, and a concrete interaction description, which adds the modality depend-
ent information. Finally, during our work we identified the context model as an im-
portant part as soon as the environment, available devices and thus the context of the
interaction comes into play. We thus also created a context model, allowing to pro-
vide context information. The model is at runtime filled with information delivered by

248 M. Blumendorf et al.

Fig. 5. Structure of the runtime system (models and mappings)

various sensors and allows the creation of mappings that trigger behavior or UI adap-
tations dependent on the context. Finally, our mapping model allows the creation of
various mappings between the different parts of the models and thus links all models
together. By linking the task model to service and interaction model, the execution of
the task model and thus changing task states to “enabled” triggers the activation of
service calls and interaction elements. While service calls activate backend functions,
active interaction elements are displayed on the screen and allow user interaction.
They also incorporate domain model elements in their presentation and allow their
manipulation through user input as defined by the mappings. The context model fi-
nally also influences the presentation of the interaction elements that are related to
context information. Thus, the execution of the task model triggers a chain reaction,
leading to the creation of a user interface from the defined user interface model. The
structure underlying this approach also opens the possibility to add additional models
or change existing models in the future. Although our current approach follows the
well accepted Cameleon Reference Framework and thus provides a similar set of
models, it provides a meta-layer, allowing to unite multiple modeling languages and
approaches.

6 Applications

Utilizing executable models as described in this paper offers various opportunities for
future user interface development. We build a couple of prototypes and smaller trials,
which showed great potential for issues like context adaptation at runtime, personal-
ization, debugging and hot deployment as well as extensibility of running systems. In
the following we report on our results concerning two multimodal applications (a
cooking assistant and an energy manager) we (re-)built based on the MASP as well as
several smaller proof-of-concept prototypes.

Both applications, the cooking assistant (CA) and the energy manager, target smart
home environments and support multimodal interaction. While the CA, we will focus
on in the following, runs in the kitchen and supports the user while preparing a meal,
the energy manager provides an overview of the energy usage of the home devices
and allows to switch devices on and off. The CA is based on three interaction steps.

 Executable Models for Human-Computer Interaction 249

First the user selects a recipe, from recommendations or the results of a search.
Afterwards the required ingredients are listed and based on the availability in the
home a shopping list is displayed. Finally the cooking process is guided with step by
step instructions. The central model of the CA is the task model, defining the underly-
ing workflow. Based on the task model, related objects have been modeled as domain
model and service calls to the backend (e.g. to retrieve the list of recipes or to control
kitchen devices) have been defined as service model. Mappings on the one hand relate
application tasks to service calls. Thus as soon as an application task becomes active
the related service call is executed. On the other hand the domain objects serving as
input and output for the service calls are related to these. In a similar way, interaction
tasks are related to interaction objects via mappings. Interaction objects thus become
activated as soon as an interaction task becomes enabled. This triggers the delivery of
the representation of the interaction objects on the interaction device. The interaction
devices are thereby identified as part of the usage context and thus the mappings be-
tween interaction model and context model provide the foundation for the delivery of
the user interface.

In addition to this complete application we also evaluated some additional features
in smaller trials. Based on the developed CA, we explored the runtime inspection of
the state information of the underlying models as well as extension mechanisms and
further capabilities to adapt the UI to the context of use.

Runtime Development – One feature of the Eclipse Modeling Framework underly-
ing our implementation is the possibility to directly connect the models to Java code.
We make use of this facility to build an editor that connects to the models of the run-
ning system. Thus any changes we make to the model via the editor are directly
propagated into the runtime system, as they also trigger the related events. This ap-
proach allows to directly inspect and change the running system. As the situation-
elements monitor the state of the execution in various details, there is an enormous
potential to access and manipulate the complete state of the system. All modeled
information is available. This feature simplifies development and debugging a lot,
however, in combination with our strictly model-based approach it also allows the
customization of the application by the end user if appropriate tools are provided
either as additional software or even as part of the application. The loose coupling of
the models and the encapsulation of the execution logic as part of the meta-model also
allow easily extending or changing the application, even at runtime, which is an im-
portant aspect to manage the continuous changes requested from software developers.

Enhancing a Running System – We evaluated the possibilities to enhance (running)
systems in another case study, where we replaced one model with another one (con-
forming to a new meta-model) at runtime. With current task-based approaches we
noted that it is rather difficult to model back and forth navigation e.g. between differ-
ent screens of an application, as dialog modeling is not the responsibility of the task
model. Therefore we will transform the task model into a state machine model and
enrich it with additional transitions representing the desired dialog navigation. This
case study showed that it is possible to replace models of the system without changing
the existing models, simply by providing the model and a set of mappings. In the
same way the system can also be extended with additional models, which emphasizes
the language-spanning aspects of the approach.

250 M. Blumendorf et al.

7 Summary and Outlook

We presented an approach to utilize dynamic executable models to build user inter-
faces. Combining definition-, situation- and execution elements provides the means to
make all relevant information explicitly accessible and also helps separating the parts
of the models relevant for the UI designer. In combination with the mapping model,
this approach allows an easy integration of multiple models at runtime to build com-
plex systems. The loose coupling of models also provides a very flexible structure
that can easily be extended and adapted to different needs. This also addresses the
problem that there are currently no standard or widely accepted UI models. Combined
with development and debugging tools this approach allows to inspect and analyze
the behavior of the interactive system on a very low level of details. To evaluate the
feasibility of the approach to cope with challenges and requirements for the next gen-
eration of user interfaces we developed a model-based runtime system for smart home
user interfaces. We use task, domain, service and interaction models and mappings
between these models at runtime to interpret the modeled information and derive a
user interface. As next steps we want to further evaluate the performance of our EMF-
and Java-based implementation to optimize the implementation. However, its current
implementation shows that the systems perform very well. We also aim at further
refining the models we are using. While the combination of different models seems
suitable, especially our current interaction model gives room for extensions and en-
hancements. The possibility to build self-aware systems using executable models is
also a fascinating feature that needs further evaluation. Utilizing the models at run-
time however, does not solve all problems of model-based user interface develop-
ment, but it gives possibilities to overcome the technical challenges in addressing
these problems.

Acknowledgements

We thank the German Federal Ministry of Economics and Technology for supporting
our work as part of the Service Centric Home project in the "Next Generation Media"
program.

References

1. Calvary, G., Coutaz, J., Ganneau, V., Vanderdonckt, J., Demeure, A., Sottet, J.-S.: The 4c
reference model for distributed user interfaces. In: Proc. of 4th IARIA International
Conference on Autonomic and Autonomous Systems (2008)

2. Balme, L., Demeure, A., Barralon, N., Coutaz, J., Calvary, G.: Cameleon-rt: A software
architecture reference model for distributed, migratable, and plastic user interfaces. In:
EUSAI (2004)

3. Blumendorf, M., Feuerstack, S., Albayrak, S.: Multimodal user interaction in smart
environments: Delivering distributed user interfaces. In: European Conference on Ambient
Intelligence: Workshop on Model Driven Software Engineering for Ambient Intelligence
Applications (2007)

 Executable Models for Human-Computer Interaction 251

4. Breton, E., Bézivin, J.: Towards an understanding of model executability. In: FOIS 2001:
Proc. of the international conference on Formal Ontology in Information Systems (2001)

5. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
unifying reference framework for multi-target user interfaces. Interacting with
Computers 15(3) (2003)

6. Clerckx, T., Vandervelpen, C., Coninx, K.: Task-based design and runtime support for
multimodal user interface distribution. In: Proc. of Engineering Interactive Systems (2007)

7. Coninx, K., Luyten, K., Vandervelpen, C., Van den Bergh, J., Creemers, B.: Dygimes:
Dynamically generating interfaces for mobile computing devices and embedded systems.
In: Chittaro, L. (ed.) Mobile HCI 2003. LNCS, vol. 2795. Springer, Heidelberg (2003)

8. Demeure, A., Calvary, G., Coutaz, J., Vanderdonckt, J.: The comets inspector: Towards
run time plasticity control based on a sematic network. In: Coninx, K., Luyten, K.,
Schneider, K.A. (eds.) TAMODIA 2006. LNCS, vol. 4385. Springer, Heidelberg (2007)

9. Feuerstack, S., Blumendorf, B., Albayrak, S.: Prototyping of multimodal interactions for
smart environments based on task models. In: European Conference on Ambient
Intelligence: Workshop on Model Driven Software Engineering for Ambient Intelligence
Applications (2007)

10. Klug, T., Kangasharju, J.: Executable task models. In: Proc. of TAMODIA 2005 (2005)
11. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.: Usixml: A

language supporting multi-path development of user interfaces. In: Bastide, R., Palanque,
P., Roth, J. (eds.) DSV-IS 2004 and EHCI 2004. sixml: A language supporting multi-path
development of user interfaces, vol. 3425. Springer, Heidelberg (2005)

12. Mellor, S.: Agile MDA (2004)
13. Mellor, S., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principles of Model-Driven

Architecture (2004)
14. Mori, G., Paternò, F., Santoro, C.: Design and Development of Multidevice User

Interfaces through Multiple Logical Descriptions. IEEE Trans. Softw. Eng. 30(8) (2004)
15. Object Management Group. Meta Object Facility (MOF) Specification — Version 1.4

(April 2002)
16. Puerta, A.R., Eisenstein, J.: Towards a general computational framework for model-based

interface development systems. In: Intelligent User Interfaces (1999)
17. Rohr, M., Boskovic, M., Giesecke, S., Hasselbring, W.: Model-driven development of

self-managing software systems. In: “Models@run.time” at the 9th International
Conference on Model Driven Engineering Languages and Systems (MoDELS/UML 2006)
(2006)

18. Sottet, J.-S., Calvary, G., Favre, J.-M.: Mapping model: A first step to ensure usability for
sustaining user interface plasticity. In: Model Driven Development of Advanced User
Interfaces (MDDAUI 2006) (2006)

19. Sottet, J.-S., Calvary, G., Favre, J.-M.: Models at runtime for sustaining user interface
plasticity. In: “Models@run.time” at the 9th International Conference on Model Driven
Engineering Languages and Systems (MoDELS/UML 2006) (2006)

20. Sottet, J.-S., Ganneau, V., Calvary, G., Coutaz, J., Demeure, A., Favre, J.-M., Demumieux,
R.: Model-driven adaptation for plastic user interfaces. In: INTERACT, (1) (2007)

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 252 – 266, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Middleware for Seamless Use of Multiple Displays

Satoshi Sakurai1, Yuichi Itoh1, Yoshifumi Kitamura1, Miguel A. Nacenta2,
Tokuo Yamaguchi1, Sriram Subramanian3, and Fumio Kishino1

1 Graduate School of Information Science and Technology, Osaka University
2-1 Yamada-oka, Suita, Osaka, 565-0871 Japan

{sakurai.satoshi, itoh, yamaguchi.tokuo, kitamura,
kishino}@ist.osaka-u.ac.jp

2 Department of Computer Science, University of Saskatchewan
110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada

nacenta@cs.usask.ca
3 Department of Computer Science, University of Bristol

Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, United Kingdom
sriram@cs.bris.ac.uk

Abstract. Current multi-display environments (MDEs) can be composed of dis-
plays with different characteristics (e.g. resolution, size) located in any position
and at different angles. These heterogeneous arrangements present specific inter-
face problems: it is difficult to provide meaningful transitions of cursors between
displays; it is difficult for users to visualize information that is presented on
oblique surfaces; and it is difficult to spread visual information over multiple dis-
plays. In this paper we present a middleware architecture designed to support a
new kind of perspective-aware GUI that solves the aforementioned problems. Our
interaction architecture combines distributed input and position tracking data to
generate perspective-corrected output in each of the displays, allowing groups of
users to manipulate existing applications from current operating systems across a
large number of displays. To test our design we implemented a complex MDE
prototype and measured different aspects of its performance.

Keywords: 3D interactions, graphical user interface, server-client, VNC.

1 Introduction

A variety of new display combinations are currently being incorporated to offices and
meeting rooms. Examples of such displays are projection screens, wall-sized PDPs or
LCDs, personal monitors, notebook PCs, tablet PCs and digital tables. Users expect to
work effectively by using multiple displays in such environments; however, there are
important issues that prevent them from effectively taking advantage of all the available
displays. MDEs include displays that can be at different locations from and different
angles to the user; as a result, it can become very difficult to manage windows, read
text, and manipulate objects. If a display is oblique to a user the visibility of information
is severely reduced. Moreover, information that is spread over multiple displays appears
fragmented making it more difficult to interpret. Another issue is how to provide users
with convenient control of the whole environment. If cursors are controlled through
indirect input devices such as mice or trackballs, the transitions from one display to

 A Middleware for Seamless Use of Multiple Displays 253

another have to be made easy to interpret; in other words, users must be able to easily
understand which movements of the mouse will move the cursor from the original to the
intended display.

We have previously proposed solutions to these problems in the form of interaction
[10] and visualization techniques [11] that are perspective-aware. Our general approach
is based on the idea that we can create more efficient visualization and manipulation
techniques if the system can calculate the user’s perspective of the environment (i.e.
how the displays of the MDE are seen from the point of view of the user).

However, the implementation of this interaction paradigm presents serious chal-
lenges because multiple sources of input originating from different machines (mice
events, text input, 3D tracking data) have to be processed to generate perspective-
corrected output in a distributed set of graphical displays. In this paper, we investigate
and describe the implementation details of a previously proposed perspective-aware
system. While the interactive principles of the system have been studied in [10] and
[11] the architectural and implementation issues have not been investigated before.
The focus here is exclusively on the architectural and implementation issues that will
help inform the design of future perspective-aware interactive systems.

To validate the proposed mechanisms and architecture we implemented a prototype
system and obtained several measures that expose the strengths and weaknesses of
our design; we discuss these in the conclusion.

Our work shows how the challenges of providing highly interactive perspective-
aware MDEs can be met; we hope that our exploration can serve as a first step to-
wards real implementations of more flexible, easier to use office environments.

2 Seamless Use of Multiple Displays

Ordinary GUI environments are designed with the assumption that the user sits in front
of a display which is fixed and perpendicular to her; windows and data are rendered
according to this assumption. Unfortunately, the perpendicularity assumption does not
always hold in multi-display environments, i.e., the display plane is not always perpen-
dicular to the viewer, especially when the display is flat and covers a large viewing
angle or when the user moves around. When a display is too oblique to a user or the
graphic elements extend to multiple displays, using it becomes difficult [19].

(a) principle of seamless use of displays (b) seamless representation (c) seamless interaction

Fig. 1. Seamless use of multiple displays

254 S. Sakurai et al.

To solve this problem, we proposed a multi-display environment that combines
several displays as if they were part of one large virtual GUI environment. The pro-
posed environment defines a virtual plane which is perpendicular to the user as a
virtual display. GUI objects (e.g. windows and cursors) on the virtual plane are pro-
jected onto the real displays as shown in Figure 1(a). As a result, wherever the user’s
viewpoint is, the user observes GUI objects (cursors and windows) without perspec-
tive distortion; just as if they were perpendicular to the user (see Figure 1(b)). Even if
a GUI object extends to several displays, the user observes it continuously beyond the
boundaries of the displays.

When the user’s viewpoint or some of the displays move, the environment detects
these movements with 3D motion sensors and updates the display immediately to
maintain the relationship shown in Figure 1(a).

In the environment, the user controls the cursor on a virtual sphere around the user,
so that the cursor can move seamlessly between displays as shown in Figure 1(c).
This technique is known as Perspective Cursor [10]. Also, the user can interact with
the multiple displays not only from a certain specific computer, but also from all
computers in the environment.

3 An Architecture Using Server-Client Topology

3.1 General Middleware Architecture

One of the requirements of our design was that displays run by different types of
computers should be easy to integrate within the general system. To facilitate the
integration of heterogeneous computers into the system we opted for an architecture
with multiple servers that take care of the specialized tasks, leaving simpler opera-
tions to the clients.

A 3D server (a dedicated 3D server machine with specific 3D server software)
keeps track and processes three-dimensional information of positions and orientations
of the users’ viewpoints and mobile displays measured through 3D motion sensors.
The positions and orientations of user viewpoints and displays are measured by 3D
motion sensors that are processed in the 3D server software to calculate the positions
and orientations of the GUI objects on the virtual plane. This information is subse-
quently sent to the client software that runs in each of the client machines. The client
software only renders the display; this way users can use low performance computers
like notebook PCs as client machines.

In order to perform ordinary tasks, the system has to run existing applications
like text editors, web browsers, etc. Our system uses an independent application
server machine that runs actual applications and sends the graphical data to the
client machines. The software that carries out the functions of broadcasting the
graphical data and receiving input from the client software instances is called the
application server software. Because this function is equivalent to the service pro-
vided by a VNC [13] server, we implemented it using RealVNC [24] (an open
source VNC server implementation).

In addition to presenting the graphical output of applications the system needs to
be able to feed user input to these same applications. Users manipulate regular mice

 A Middleware for Seamless Use of Multiple Displays 255

Fig. 2. General architecture of the middleware

and keyboards that are connected to the client machines in order to interact with the ap-
plications shown in any display. The client software sends all inputs to the 3D server
software, and then the 3D server software relays the inputs to the corresponding windows
according to the positions and orientations of the GUI objects in the environment. When
the cursor is on top of a window, the 3D server software transfers the cursor inputs to the
application server software. For the consistency of the input/output flow, the keyboard
inputs on the client machines are sent to the application server software through the 3D
server software. In this way, the inputs on all client machines are appropriately processed
through the network. Figure 2 summarizes the architecture. We describe the overview of
each type of software below.

Client software: Each instance of the client software corresponds to one display.
Therefore, the number of instances of the client software running on a particular client
machine corresponds to the number of displays connected to that particular machine.
The client software receives the 3D positions and orientations of all GUI objects from
the 3D server software and the application images from the application server soft-
ware. Then the windows are filled with the application image which is clipped from
the desktop image of the application server machine. The client software also collects
all inputs and sends them to the 3D server software.

3D server software: The 3D server software runs on a dedicated machine. It proc-
esses and stores positions and orientations of users’ viewpoints and all displays; with
this information, it calculates the positions and orientations of the GUI objects on the
virtual plane. When it receives cursor input from the client software or detects move-
ment of the 3D motion sensors, the 3D server software recalculates the positions and
orientations of the GUI objects and resends. In addition, it processes the inputs from
the client software and relays them to the application server software.

Application server software: The application server software and any application
available to the users run on a single application server machine. The application
server software receives the inputs and relays them to the applications. Then, if there
is any change of the application images, it sends the altered graphical information
back to the client software.

256 S. Sakurai et al.

3.2 Network Communication

The client software sends the cursor and keyboard inputs to the 3D server software.
On the other hand, the 3D server software sends the positions, orientations, conditions
and disappearance notification of the GUI objects to the client software instances
which need to render the GUI objects. The messages related to the positions and ori-
entations are sent whenever the user moves the mouse or the 3D server software de-
tects movements of the 3D motion sensors. These communications are robust because
even if pieces of data are lost in communication, the 3D server software sends up-
dated data continuously and a newer block of data will eventually replace the missing
data. An unreliable network protocol (UDP) is used because high-throughput is re-
quired and old data has no value.

Unlike geometric information, other kinds of communication such as conditions
and disappearance notifications require guaranteed ordered delivery because the loss
of a single packet could set the system in an inconsistent state. These data are there-
fore transmitted using reliable protocols such as TCP.

There exist two other important flows of information: the desktop image data from
the application server software to the client software and the cursor and the keyboard
inputs from the 3D server to the application server software; both flows are com-
pressed and sent through the VNC connection.

4 Management of GUI Objects in 3D Space

This section describes the transformations that the three-dimensional data undergoes and
how the processed data is subsequently used to render the seamless GUI elements.

In order to provide seamless use of GUI objects across multiple displays, the loca-
tions and orientations of these objects are represented with respect to several coordi-
nate systems in the environment. Figure 3(a) shows two three-dimensional coordinate
systems; the coordinate system G of the real world and the display’s local coordinate
systems Dn(n = 1, 2,…) in which the origin is at the top-left corner of each display.
Figure 3(b) shows the two-dimensional coordinate system A which corresponds to the
pixel coordinate system of the application server machine.

4.1 Seamless Representation of Information on Multiple Displays

4.1.1 3D Server Software Functionality
The 3D server software receives positions and orientations of users’ viewpoints and
mobile displays from the 3D motion sensors. These data are expressed in terms of an
arbitrary coordinate system G defined by the 3D tracking device that is also used to
represent the positions and orientations of the virtual GUI elements (cursors and win-
dows). Positions, orientations and sizes of the fixed displays are configured at initiali-
zation time, and are also expressed in terms of the G coordinate system. The resolu-
tion of displays is sent from the client software when the client software connects to
the 3D server software. All these data represents all the relevant geometrical informa-
tion of the physical system, allowing the 3D server to perform perspective operations
on the virtual GUI elements.

 A Middleware for Seamless Use of Multiple Displays 257

Fig. 3. Coordinate systems in proposed middleware

Fig. 4. Positions and postures of window and cursor in 3D server software

In order to make a window perpendicular to the user, the 3D server software calcu-
lates the position (top-left corner) and orientation of the virtual window which is per-
pendicular to the user’s viewpoint in the coordinate system G. Figure 4(a) shows the
data of the virtual window and cursor held in the 3D server software. Using the view-
point’s position and the initial position of the virtual window, the 3D server calculates
the distance from the viewpoint to the virtual window (d in Figure 4(a)), the line
which passes through the viewpoint and the virtual window (K in Figure 4(a)) and the
anchor of the virtual window (the intersection between the line K and the display). If
the line K intersects several displays, the anchor is set on the nearest intersection from
the viewpoint. Meanwhile, the direction from the top-left corner to the top-right cor-
ner (the right direction) of the virtual window is parallel to the horizontal plane in the
coordinate system G, and the direction from the top-left corner to the bottom-left
corner (the down direction) is perpendicular to both the line K and the right direction.
From these data and the size of the virtual window, the 3D server calculates the posi-
tions of each corner of the virtual window (see Figure 4(b)). Then, the 3D server
software detects all displays which should render the window by calculating the inter-
sections between the displays and the extended lines from the viewpoint to each cor-
ner of the virtual window.

(a) coordinate system G and Dn (b) coordinate system A

 (a) coordinations of GUI in 3D server software (b) virtual window

258 S. Sakurai et al.

Fig. 5. Windows adapt to the movement of the 3D position tracker

In addition to the window, the 3D server software holds the information of the vir-
tual cursor. Using direction v (from the viewpoint to the virtual cursor), the 3D server
software calculates line J, which is the extension of v from the viewpoint into the
cursor anchor on the display. Then it detects all displays which should render the
cursor by calculating the intersections of the displays and the line J.

When the viewpoint moves, the 3D server software needs to relocate the GUI ob-
jects according to the new positions measured from the 3D motion sensors. The an-
chor is fixed to a physical pixel so that windows do not float around with the move-
ment of the user; only the orientation of anchored windows changes. This effect is
achieved by recalculating line K and the positions of each corner of the window using
the anchor and the updated viewpoint and subsequently refreshing the corresponding
displays. The distance d is kept so that the apparent size of the window stays constant.
Figure 5(a) shows how the virtual window adapts to the movement of the viewpoint.
The virtual cursor adapts to the movement of the viewpoint in a similar fashion: the
server recalculates v and J, and then sends repaint signals to the appropriate displays.

When a mobile display moves, the 3D server software still maintains windows and
cursors anchored to a particular pixel on the display. Figure 5(b) shows a window
moving with the display.

4.1.2 Rendering to Display
To simplify rendering in the clients, the 3D server software converts the positions of
the viewpoint and each corner of the virtual window into the display’s local coordi-
nate system Dn before sending them. When a client instance receives the data it as-
signs regions to the icon bar, the frame, and the client area of the virtual window (see
Figure 6(a)). Then, the client area of the window is filled with the corresponding
patch of the desktop image received from the application server. Correspondences
between the window client areas and the desktop image patches are maintained and
updated by the 3D server software, and expressed in terms of coordinate system A.
The result of the rendering process is illustrated in Figure 6(b).

If several windows overlap, the client software renders the windows according to
their priority; the highest-priority window always stays on top. A window priority
stack is managed independently of the three-dimensional positions in the 3D server.
Many priority policies are possible, but our implementation keeps windows on top
that have received input recently.

(a) adaption to viewpoint’s movement (b) adaption to display’s movement

 A Middleware for Seamless Use of Multiple Displays 259

Fig. 6. Client software drawing window

Fig. 7. Rendering of the cursor

To render the cursor to the display, the 3D server software converts the direction v,
the vertical vector, and the viewpoint position in the coordinate system G to the coordi-
nate system Dn. Then the 3D server software sends these data to the appropriate instance
of the client software. When the client receives these data, it creates a virtual cursor on a
virtual plane which is perpendicular to the direction v at the distance c from the view-
point. The size and distance from the user of the virtual cursor (c in Figure 7(a)) are
constant; the orientation of the cursor is calculated using the vertical vector so that the
cursor always looks up and points away from the user. Finally, the client renders the
virtual cursor to the display surface. Figure 7 shows the rendering of the cursor.

The windows and cursors are re-rendered whenever the 3D or the application serv-
ers notify position and orientation movements or when the graphical application data
changes.

4.2 Seamless Interaction on Multiple Displays

When the user generates input through a client (e.g., by moving the mouse) the client
first sends it to the 3D server software. The data sent includes the type of input (e.g.,
“click”, “move”, etc.) and the corresponding magnitude (when appropriate). When the
3D server receives movement input events, it transforms the planar movement data into
a rotation of the direction v around the user; the horizontal movement makes v rotate
following the parallels of a virtual sphere centered on the user’s head. The vertical
movement rotates v along the meridians of the same sphere. Then, the 3D server soft-
ware recalculates the line J and the anchor’s position using the updated direction v, and
sends back the direction v and the viewpoint’s position to the client for rendering.

(a) projection of cursor (b) detail of the virtual cursor

(a) virtual window (b) projection of window

260 S. Sakurai et al.

Figure 8 shows the movement of the cursor in the 3D server software. Note that the
spherical nature of the cursor movement mapping makes it possible to point to areas
where there is no display.

If the pointing device that controls a cursor does not move, the cursor stays an-
chored to the same physical pixel of the screen where it is being displayed, regardless
of the user’s movement; however, if the cursor is pointing towards a direction where
there is no display, the anchor is temporally erased, and the direction v is fixed in-
stead. At this time, the direction v is stable against the movement of the viewpoint.
The anchor is recreated when the cursor comes back on any display.

The 3D server software also keeps positions and locations of the icon bar, frame,
and client area in order to detect clicks on each region of the window. If the 3D server
software receives a click while the cursor is on the icon bar, the 3D server software
adapts appropriately according to the icon; the icon bar contains icons that allow
changing the owner of the window, resizing and dragging the window as well as alter-
ing its privacy and resizing behavior. The detailed behaviors of the window including
the multi-user case are described in [11]. If the cursor is in the client area, the 3D
server software converts the cursor position into a two-dimensional position in the
application server’s coordinate system (A in Figure 3(b)). Then it sends the type of
the input and the cursor position to the application server which, in turn, redirects the
event to the corresponding application.

As we mentioned before, the cursor can be located in positions where there is no
display. In this case, the cursor cannot be displayed directly but we make use of Halo
[2], an off-screen visualization technique to indicate to the user the actual position of
the cursor.

Fig. 8. Movement of cursor

5 Prototype

In this section, we describe the implementation of a prototype system with the fea-
tures described in section 3 and 4. We also describe the results of measurements of
the input/output response time as an aspect of the performance.

5.1 Implementation

We implemented the client software and the 3D server software with Microsoft Vis-
ual C++ 2005 on Microsoft Windows XP SP2. The client software uses the OpenGL

 A Middleware for Seamless Use of Multiple Displays 261

Fig. 9. A snapshot of two users using the prototype system

graphic library for the rendering. The communication between the servers and the
clients is implemented using DirectPlay [21]. For the application server software, we
used one of the several available open-source VNC implementations, Real VNC [24].
The application server receives the inputs from the 3D server software, posts the in-
puts to the applications, compresses the desktop image, and sends the image to the
client software. Because there are Real VNC implementations for Windows, Mac OS
and various Linux distributions, users are free to use any of these operating systems
on the application server machine (see Figure 10).

For 3D position tracking (users’ viewpoints and display position and orientations)
we used Intersense's IS-600 Mark 2 ultrasonic tracker.

Figure 9 shows a scenario where two users place and use an editor, a web browser,
a multimedia player, and a geographic application on the system. Figure 10 shows
some desktop images of the client machine while the application server is running on
several operating systems. For illustration purposes, the widow in the figure shows
the whole desktop image of the application server machine.

Fig. 10. Display images of client machines with various operating systems

5.2 Measurement of Response Time

In the architecture of the proposed middleware, all inputs/outputs get delayed when
they pass through the network. This latency might affect tasks on the system ad-
versely. Thus, it is important to measure at least two types of response time: 1) re-
sponse time to control the cursor with a mouse, and 2) response time for updating an
application image.

(a) Windows XP (b) Max OS X (c) Fedora Core 6

262 S. Sakurai et al.

5.2.1 Environment for Measurement
The 3D server software and the application server software ran on desktop PCs (CPU:
Xeon 2.8 GHz, Mem: 2.0 GB, OS: Windows XP SP2). We also used several desktop
PCs (CPU: Xeon 2.2 GHz, Mem: 2.0 GB, OS: Windows 2000 SP4, Graphics: Quadro
FX 4000) and a notebook PC (CPU: Core Duo 1.6 GHz, Mem: 1.0 GB, OS: Windows
XP SP2, Graphics: Mobile Intel(R) 945 Express Chipset Family) for the client soft-
ware. Each desktop PC and the notebook PC ran one or two instances of the client
software according to the condition of the measurements. All desktop PCs were con-
nected with wired connections (1000BASE-T) and the notebook PC was connected
with a wireless connection (IEEE 802.11g).

5.2.2 Response Time for Cursor Control
We measured the time elapsed between a registered movement of the mouse on a
client machine and the reception of the updated cursor position by the client machine.
Figure 11(a) shows the mean time and the standard deviations of 100 trials in each
condition. In conditions G1 to G4, one to four instances of the client software ran on
the desktop PCs without the notebook PC. In condition W2 and W5, one instance of
the client software ran on the notebook PC with one and four instances on the desktop
PCs. The response time measured on the W2 and W5 conditions corresponds to
measures taken through the notebook PC.

5.2.3 Response Time for Updating the Application Image
For the application update measurements, we used an image viewer on the application
server machine and measured the elapsed time between an update image signal in the
client and the complete change of the image in the windows displayed by the client.
Because the accurate time when the client machine finishes the update cannot be de-
tected manually, we recorded the display with a video camera (30 fps), and then calcu-
lated the time by counting the frames. We chose full colour landscape photos to display
on the image viewer because of their low compressibility. We chose images that ranged
from 16 × 16 pixels to 1024 × 1024 pixels in size, which correspond roughly to the
typical size of a single letter to a medium-sized window. Figure 11(b) shows the mean
times and the standard deviations of 5 trials in each connection type and each size of the
image. The conditions are the same as those in Figure 11(a). In each condition, the

 (a) response time for cursor movement (b) response for window update

Fig. 11. Result of measurement of response time

 A Middleware for Seamless Use of Multiple Displays 263

frame rate of the client software was 60 Hz (16ms per frame). Thus, latency due to
communication is about 8 ms less than the values displayed in Figure 11.

6 Discussion

6.1 Effect of Latency

Figure 11(a) showed that the latencies of the cursor controls are shorter than 10 ms in
all conditions. Generally, response time should be less than 50-150 ms for simple
tasks like cursor control, keyboard typing, and so on [15]. Thus the response time for
the cursor controls on the proposed middleware is adequately short and does not im-
pede regular cursor use. We should also consider the latency for the updates of the
positions of the GUI objects when the users or the displays move. It can be calculated
by adding the latency of the 3D motion sensors (which is approximately 50 ms) and
the latency of the communications from the 3D server software to the client software
(less than 10 ms). The total latency is about 60 ms. In the field of the virtual reality it
has been shown that a latency of 80 ms affects a target tracing task negatively when
the user is wearing a half transparent HMD [16]. Although there is no report about the
effect of latencies below 80 ms, we consider that these effects are trivial in our system
because the movements of the users’ viewpoints are usually small when performing a
task. We will investigate effects of these latencies more precisely in the future.

The latencies to update the image of 16 × 16 pixels are less than 100 ms in each
condition as described in section 5.2.3. Thus, these are adequately short for key typ-
ing. On the other hand, the latencies to update the larger images like 1024 × 1024
pixels amount to up to 1000 ms on the wired connections and up to 2500 ms on the
wireless connections. These results indicate that the proposed middleware is not
suited to deal with applications like movie players which update whole window more
frequently than once per second. So users should choose the applications according to
the types of connections when users work on the system. Alternatively, it might be a
solution to implement special application server software which is optimized to send
the application images to multiple instances of the client software, although we would
have to implement it on each operating system.

When users use applications which need network communications, these might
further increase the response time of the system. But we can separate the communica-
tions of the application from those of the middleware by adding another network card
to the application server machine. In this way, the communications of the applications
will not affect to the response time of the middleware.

6.2 Extensions of the Middleware

In the proposed middleware, the 3D server software can deal with multiple cursors by
distinguishing the input messages from different client machines and processing them
appropriately. However, existing operating systems on the application server do not
support multiple cursors. In order to provide truly collaborative interaction, we need
to develop applications which support multiple cursors in the case of multiple users.
This problem can also be solved by designing an architecture with multiple applica-
tion servers where each window corresponds to the desktop image of a different

264 S. Sakurai et al.

machine. However, the system will need many computers and we will still not be able
interact with one window with multiple cursors at same time. The demands towards
multiple cursor operating systems in the field of CSCW are, however, increasing and
there start to appear experimental systems in which multiple users can interact simul-
taneously with objects such as Microsoft Surface [22] and Entertaible [9]. We believe
that operating systems will support multiple cursors in a few years and that the appli-
cation server software on such operating systems will overcome the current problems.

In the proposed middleware, the client machines have to render the corresponding
display image based on the 3D positions and orientations and the desktop image.
According to our measurements, all client software instances rendered at a frame rate
of at least 60 Hz. This means that general notebook PCs without specialized graphic
hardware has adequate power for the client software. For slower machines, it might be
better to adopt a different technique such as server rendering, that is, the 3D server
software renders and sends the images for the client software. Another alternative is
to use fast 3D graphics libraries for mobile devices like OpenGL ES [23]. We plan to
investigate implementations with small devices in the near future.

7 Related Work

In this section, we describe existing research and systems that use multiple displays.
In some systems, the user can interact with multiple displays from one computer.

PointRight [8] and mighty mouse [4] redirect the cursor inputs to other computers
through a network. Thus, the user can control multiple computers at same time. How-
ever, what the systems do are just transmissions of the inputs. The user can not relo-
cate applications beyond the displays because each computer works independently.

On the other hand, some systems support the relocations and the collaborations of
the applications beyond the displays. For example, a computer with a graphic board
which has multiple outputs treat aligned displays as a large desktop. Mouse Ether [1]
can also correct the difference of the resolutions and the sizes between displays for
cursor control. Distributed Multihead X [20] sends commands for drawing to multiple
computers through a network and creates a huge desktop with many aligned displays.
These systems, however, generally assume that all displays are fixed.

Wincuts [17] can transmit copy images of the window on the personal small dis-
plays to public large displays but it can only show information to other users. ARIS
[3], i-Room [18], EasyLiving [6], and Gaia [14] allow the user to use multiple dis-
plays collaboratively which are placed in various positions. In these environments, the
user can relocate and interact with the applications beyond displays; however, the
GUI spaces are not connected seamlessly but logically. That is, when a cursor goes
out of a display, it jumps to another display.

There has been some research on techniques that allow the user to interact with
multiple displays seamlessly including mobile displays like notebook PCs or PDAs
[12]. Steerable camera-projectors can also be used to create dynamic interactive dis-
plays on any plane of the environment (e.g. walls, tabletops and handheld white
boards in an environment) [5]. However, in these systems the relationship between
the user viewpoint and the display is not considered.

 A Middleware for Seamless Use of Multiple Displays 265

In the field of ubiquitous computing, many architectures and frameworks have
been proposed for using multiple devices [7]. Although this work can be used to in-
form the design of general data-exchange architectures for multi-display systems such
as ours, the particular requirements of a perspective-aware environment required a
specific study of the interaction architecture.

8 Conclusion

In this paper, we investigated the implementation issues of a multi-display system which
allows users to use all displays seamlessly and effectively in common cooperative sce-
narios. We proposed a double server-client architecture and detailed the data processes
necessary to make the system perspective-aware. We also implemented a working pro-
totype and measured its performance in terms of interactive throughput. In the future,
we intend to further evaluate the usability of the system and to improve the interaction
architecture in order to achieve higher responsiveness and flexibility of use.

Acknowledgement

This research was supported in part by “Global COE (Centers of Excellence) Pro-
gram” of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

1. Baudisch, P., Cutrell, E., Hinckley, K., Gruen, R.: Mouse ether: accelerating the acquisi-
tion of targets across multi-monitor displays. In: Conference on Human Factors in Compu-
ting Systems, pp. 1379–1382 (2004)

2. Baudisch, P., Rosenholtz, R.: Halo: a technique for visualizing off-screen objects. In: Con-
ference on Human Factors in Computing Systems, pp. 481–488 (2003)

3. Biehl, J.T., Bailey, B.P.: ARIS: an interface for application relocation in an interactive
space. In: Graphics Interface, pp. 107–116 (2004)

4. Booth, K.S., Fisher, B.D., Lin, C.J.R., Argue, R.: The “mighty mouse” multi-screen colla-
boration tool. In: 15th annual Symposium on User Interface Software and Technology, pp.
209–212 (2002)

5. Borkowski, S., Letessier, J., Crowley, J.L.: Spatial control of interactive surfaces in an
augmented environment. In: 9th IFIP Working Conference on Engineering for Human-
Computer Interaction, pp. 228–244 (2004)

6. Brumitt, B., Meyers, B., Krumm, J., Kern, A., Shafer, S.A.: EasyLiving: technologies for
intelligent environments. In: 2nd international symposium on Handheld and Ubiquitous
Computing, pp. 12–29 (2000)

7. Endres, C., Butz, A., MacWilliams, A.: A survey of software infrastructures and frame-
works for ubiquitous computing. Mobile Information Systems Journal, 41–80 (2005)

8. Johanson, B., Hutchins, G., Winograd, T., Stone, M.: PointRight: experience with flexible
input redirection in interactive workspaces. In: 15th annual Symposium on User Interface
Software and Technology, pp. 227–234 (2002)

266 S. Sakurai et al.

9. Loenen, E., Bergman, T., Buil, V., Gelder, K., Groten, M., Hollemans, G., Hoonhout, J.,
Lashina, T., Wijdeven, S.: Entertaible: a solution for social gaming experiences. In:
Workshop on Tangible Play: Research and Design for Tangible and Tabletop Games (in
International Conference on Intelligent User Interfaces), pp. 16–19 (2007)

10. Nacenta, M.A., Sallam, S., Champoux, B., Subramanian, S., Gutwin, C.: Perspective cur-
sor: perspective-based interaction for multi-display environments. In: Conference on
Human Factors in Computing Systems, pp. 289–298 (2006)

11. Nacenta, M.A., Sakurai, S., Yamaguchi, T., Miki, Y., Itoh, Y., Kitamura, Y., Subrama-
nian, S., Gutwin, C.: E-conic: a perspective-aware interface for multi-display environ-
ments. In: 20th annual Symposium on User Interface Software and Technology, pp. 279–
288 (2007)

12. Rekimoto, J., Saitoh, M.: Augmented surfaces: a spatially continuous work space for hy-
brid computing environments. In: Conference on Human Factors in Computing Systems,
pp. 378–385 (1998)

13. Richardson, T., Stafford-Fraser, Q., Wood, K.R., Hopper, A.: Virtual network computing.
IEEE Internet Computing 2(1), 33–38 (1998)

14. Román, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrstedt, K.: A
middleware infrastructure for active spaces. IEEE Pervasive Computing 1(4), 74–83
(2002)

15. Schneiderman, B.: Designing the user interface, 3rd edn. Addison-Wesley, Reading (1998)
16. So, R.H.Y., Griffin, M.J.: Effects of lags on human-operator transfer functions with head-

coupled systems. Aviation, Space, and Environmental Medicine 66(6), 550–556 (1995)
17. Tan, D.S., Meyers, B., Czerwinski, M.: WinCuts: manipulating arbitrary window regions

for more effective use of screen space. In: Conference on Human Factors in Computing
Systems, pp. 1525–1528 (2004)

18. Tandler, P.: Software infrastructure for ubiquitous computing environments: supporting
synchronous collaboration with heterogeneous devices. In: Ubiquitous Computing, pp. 96–
115 (2001)

19. Wigdor, D., Shen, C., Forlines, C., Balakrishnan, R.: Perception of elementary graphical
elements in tabletop and multi-surface environments. In: Conference on Human Factors in
Computing Systems, pp. 473–482 (2007)

20. Distributed Multihead X Project. http://dmx.sourceforge.net/
21. Microsoft DirectX Developer Center, http://www.microsoft.com/japan/

msdn/directx/
22. Microsoft Surface, http://www.microsoft.com/surface/
23. OpenGL ES, http://www.khronos.org/opengles/
24. RealVNC, http://www.realvnc.com/

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 267 – 280, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Graphic Rendering Considered as a
Compilation Chain

Benjamin Tissoires1,2,3 and Stéphane Conversy2,3

1 DGAC / DSNA / DTI / R&D.
7 avenue Ed. Belin, 31055 Toulouse, France

Benjamin.Tissoires@aviation-civile.gouv.fr
2 ENAC, Laboratoire d'Informatique Interactive.

7 avenue Ed. Belin, 31055 Toulouse, France
stephane.conversy@enac.fr

3 IRIT - IHCS, Université Paul Sabatier.
118 route de Narbonne, 31062 Toulouse Cedex 4, France

Abstract. Graphical rendering must be fast enough so as to avoid hindering the
user perception/action loop. Traditionally, programmers interleave descriptions
and optimizations to achieve such performances, thus compromising modular-
ity. In this paper, we consider graphic rendering as a compilation chain: we de-
signed a static and dynamic graphical compiler that enables a designer to
clearly separate the description of an interactive scene from its implementation
and optimization. In order to express dependencies during run-time, the com-
piler builds a dataflow that can handle user input and data. We successfully
used this approach on both a WIMP application and on a demanding one in
terms of computing power: description is completely separated from implemen-
tation and optimizations while performances are comparable to manually opti-
mized applications.

Keywords: interactive software, computer graphics, compiler, dataflow,
modularity.

1 Introduction

Interactive systems have to be efficient. In particular, graphical rendering must be fast
enough so as to avoid hindering the user perception/action loop. In addition, as any
other software, interactive systems have to be modular, in order to maximize main-
tainability and reliability. The need for modularity is even more important with inter-
active systems. Making software modular minimizes the cost of modification. As
designing good interactive systems requires designers to implement, test, and tweak a
large set of alternative solutions iteratively, modular software maximizes the quality.
Traditionally, programmers implement graphic rendering in interactive software using
an imperative paradigm. They use graphical libraries, and often introduce optimiza-
tion during the first stages of development so as to maximize performances. This
leads to code in which description and optimization are interleaved, which hinders
designers' ability to rapidly test new designs. It can even harm safety, as manual

268 B. Tissoires and S. Conversy

optimization may change the graphical semantics and introduce bugs that are notice-
able only with precise situations.

Computer science literature contains solutions for these kinds of problem. Re-
searchers have designed compilers, i.e. systems that transform a high-level language
to a low-level one. They enable programmers to focus on description, while leaving
low-level optimization to the compiler. In order to address the problems encountered
by interactive systems programmers, we introduce in this paper a new approach to
graphical rendering implementation. We consider the transformation from input de-
vices and data to graphics as a compilation chain. We design a static and dynamic
graphical compiler: it enables a designer to clearly separate the description of an in-
teractive scene from its implementation and optimization.

We first describe three scenarios illustrating how today's designers implement
graphical rendering and cope with description, efficiency and modularity. Based on
these examples, we explain why graphical rendering implementation can be consid-
ered as a compilation chain. We describe the principles of the graphical compiler, and
report on the results we obtained with two examples.

2 User Interface Development Scenarios

In this section, we present three scenarios concerning the development of user inter-
faces. These scenarios are the basis of our reflexion.

Using Graphic Toolkits

Since the rise of the WIMP (Window Icon Menu Pointer) paradigm, most program-
mers use User Interface toolkits, such as Motif or Qt. UI Toolkits allow programmers
to rapidly construct an interface by juxtaposing widgets, i.e. independent units of
graphics and behaviour, on the interface. However, the widget model is not suitable
for the implementation of post-WIMP interactions. WIMP interfaces implicitly use a
model where widgets are juxtaposed, and they can not be used in scene where graph-
ics lay on top of each other. For example, programmers can not use widgets to im-
plement a radar image that contains flight elements on top of sectors. In addition, pro-
grammers do not have access to the inner mechanisms of the toolkit. Hiding
implementation details eases use and prevents misuse, but it also prevents some of the
optimizations that may speed up the rendering process [15] [10]. There exists a few
post-WIMP toolkits [3], but they are internally optimized for a specific part of the
rendering process (e.g. culling small or out-of-screen ZUI items).

Fig. 1. The chain used in the model of ARINC 661 by [2]

 Graphic Rendering Considered as a Compilation Chain 269

Model-Based Approach

Conversy et al. in [8] present a model-based approach to separate behaviour from
rendering. The idea is to describe the behaviour of the application with Petri Nets to-
gether with a conceptual model of the interactive elements, and the rendering with an
SVG scene (Scalable Vector Graphics [22]). When user input occurs, the Petri Net
modifies the conceptual model, which in turn is transformed into a new SVG scene
through an XSLT stylesheet (Extensible Stylesheet Language Family Transformations
[23]). The SVG scene is then redrawn on the screen (Fig. 1). This model-based ap-
proach allows the designer to clearly separate descriptions of appearance and behav-
iour (look and feel), to use models based on formalism, and to use SVG, which is an
exchange format between coders and graphic designers ([7]). However, the execution
process of this chain is costly in terms of performance: each time a change occurs; the
whole transformation chain is triggered, and slows down the system. Moreover, the
system is based on completely separated stages: each intermediate data structure is
completely rebuilt, and does not benefit from invariant behaviour of the front stages.
Since there can be seven stages between the Petri Nets and the final pixels, perform-
ances are extremely low. Thus, the system is completely modular, but not reactive
enough to be used in real-time.

Working With the Graphic Device to Optimize Performance

One solution to render fast interactive applications is to work at a low level of pro-
gramming, with the help of libraries close to the hardware, such as OpenGL (Open
Graphic Library1). At this level, programmers can use optimizations that mainly
consist in caching a maximum amount of data or commands on the graphic device.
For instance, the programmer can use display lists - a record of a list of OpenGL
commands that can be called at once - or memoization of a computed image into a
texture.

However, working at such a low level forces the programmer to interleave descrip-
tion of the graphical scene and optimizations. Moreover such optimizations need to be
known by the programmer and programmed by hand, and influence his way of writ-
ing the application at the cost of readability. These optimizations speed up the whole
application but as they are too tightly linked with the rest of the code, it is hard to
change either the description or the optimization.

Discussion

These three scenarios show that with the available tools and methods, a programmer
has to do the job of a compiler to build non-standard modular and efficient user inter-
faces. He has to allocate registers (OpenGL texture or display list), to manage caches
of data (render into textures), and to reorganize his optimizations in order to have the
fastest code possible. He can even implement parts of a Just In Time compiler (JIT),
by designing optimizations triggered at the run-time (such as display lists).

1 OpenGL, The Industry's Foundation for High Performance Graphics: http://www.opengl.org

270 B. Tissoires and S. Conversy

3 Graphical Rendering = Compilation Chain

In this section, we explain why the graphical rendering process can be considered as a
compilation chain. Then we define the notion of a graphical compiler (GC2) and of
intermediate graphical languages.

Fig. 2. The “classical” rendering process

Why it Is a Compiler Problem

Writing an interactive scene needs several steps to produce the final application. Fig. 2
shows what most programmers do: before trying to display something, some data are
needed; then, these data are transformed into a high-level description; if the rendering
process needs it, this high-level language is usually displayed and a loop analyzes this
language in order to apply changes that occur between two frames (this is the case of
scenario number 2). When high performances are needed, the programmer converts
by hand the high-level description into a lower-level one, which in turn is rendered to
the screen (scenario number 3). This requires the programmer to implement a scheme
in which the programmer has to take care of the synchronization between a high-level
API and a lower level one. This figure also shows the different refresh loops that are
used in graphic rendering. The solid loop to the right symbolizes the video controller
that scans the video memory at each refresh of the screen. The two dotted loops sym-
bolize the fact that the loop can be either on the high level, or on the low level. Thus,
in scenario number 2 (the model-based one), the loop is placed on the high-level de-
scription, and in the scenario number 3 (the OpenGL one) the loop stands on the low-
level description.

Hence, writing an interactive interface consists in a chain of transformations,
which can be handled by a compiler:

A compiler is a computer program, or set of programs, that translates
text written in a computer language - the source language - into another
computer language - the target language. [1]

In the problem of rendering graphical scene, the data can be considered as an input
language and the drawing commands as the target language (Fig. 2). In order to ex-
plain the structure of the GC (Fig. 4), we will compare it to the structure of the Java
programming environment (Fig. 3). The graphical compiler chain consists in the

2 In Computer Science, GC traditionally stands for Garbage Collector, but in the rest of the

article, we will abbreviate graphical compiler by GC.

 Graphic Rendering Considered as a Compilation Chain 271

Fig. 3. The compilation chain used in Java when starting from UML...

Fig. 4. ...and its equivalent when rendering applications

different transformations between languages. The high-level description of the
graphical scene - through an SVG-like syntax - is equivalent to Java code written by
the programmer. The low-level description which is strongly linked with the hardware
we used at the end (abstracted with OpenGL) is the equivalent of the bytecode pro-
duced by the Javac compiler. At the end of the chain, a backend either interprets
(JVM) or generates (a native Javac compiler) the instructions that are executed on the
hardware.

In addition, the GC includes another front-end, the conceptual model and the rules
needed to transform it into SVG. This stage is equivalent to recent environments that
generates Java code from UML description. We will see that it allows the GC to han-
dle in a uniform way all the transformations, so that optimizations are applied in the
whole program.

By considering the process of rendering graphical scene as a compiler chain, we
expect the following benefits: this architecture makes it possible to separate the de-
scription of the graphics and the optimizations; concepts such as optimizations that
have been well-studied in the compiler problem can be transposed to the problem of

272 B. Tissoires and S. Conversy

rendering graphics; the high-level description can be abstracted enough to be inde-
pendent of the final renderer used; the semantics of the transformations used will be
clear enough to be able to check rendering.

Transformations and Languages

The Conceptual Model. The first language of the graphical compilation chain is an
abstraction of the data. It allows the programmer to separate the presentation and the
other parts of the application, i.e. the interaction part and the dialog controller. This
part contains elements such as the value used to describe a model of a slider in a
WIMP application, or the string of characters of a text field [8].

Once the conceptual model of the elements to be drawn is available, the next step
is to transform it in terms of graphical shapes. As said before, we extend the standard
model of a compiler by adding a stage on the front: the conceptual model. However,
as the GC does not know this specific language used by the programmer, the latter has
to give to the GC both the front-end language and the transformation rules to convert
his specific language into the high-level language of the GC.

The High-level Description of Graphics. This description contains a subset of SVG
elements such as rectangles, ellipses, path, groups, etc. The scene is described with a
graph, with nodes containing geometrical and style transforms. SVG was designed
with two purposes: it is a high level language, i.e. it makes it possible to describe
complex scenes with a short description; it is also an exchange format between appli-
cations and designers. Another advantage of using a SVG-like language is that its
structure (a graph) is highly adapted to an implementation in OpenGL.

Fig. 5. A shape with a fill and a stroke can be divided into two elementary shapes

Before the low-level description, the GC inserts another stage which consists in
converting every shape into a path and the direct cyclic graph into a tree. Thus, a
shape made up of a fill and a stroke is divided into two elementary shapes with the
same semantic as a group of shapes (Fig. 5). This reduces the language to a kernel, i.e.
the minimum set of primitives needed to express the semantics of SVG. It thus mini-
mizes the complexity of the subsequent transformations. Such stages are also included
in most standard compilers: they convert the input source into an intermediate repre-
sentation. This step also allows the compiler to produce an optimized code.

 Graphic Rendering Considered as a Compilation Chain 273

The Low-level Description. The GC converts high-level primitives into primitives suit-
able for the hardware: the low-level description. The previous language is thus converted
into a tree containing the instructions needed to render the scene: the display graph. As
the current renderer used is OpenGL, this part contains the instructions such as glPush-
Matrix, glTranslate or the instructions needed to tessellate and render a path.

4 Expressing Dependencies with a Dataflow

The static compiler produces the equivalent of a “binary” program written in the
low-level description. Executing the program consists in interpreting the display
graph at “run-time”. However, the dynamic compiler executed at run-time needs to
know the dependencies of the different variables. We chose to express the depend-
encies with a dataflow. The GC statically compiles this dataflow. The dynamic
graphical compiler does not need to recompile the scene when a change occurs be-
tween two frames. For example, if the change consists in the modification of the
position of an element, the produced code is the same, except the part concerning
the changed variables (Fig. 6).

The programmer needs to specify which variables are input so as to help the com-
piler to know which parts will change during run-time, and to optimize the produced
code. The GC caches all the static data during the static compilation.

Fig. 6. Changes in the produced code when moving one object

Implementation

Language. The language used for the dataflow is a mathematical one. The designer
specifies it by expressing formulas. Our compiler overloads operators in Python3 to
build the parser. For instance, we can write:

x0 = var('x0',5)
y0 = var('y0',10)
x1 = var('x1',x0+200)
y1 = var('y1',y0+250)

3 Python Programming Language - Official Website: http://www.python.org

274 B. Tissoires and S. Conversy

This code builds two inputs x0 and y0 and two dependent variables x1 and y1.
Building and naming variables allow further references in the description of the scene.
For instance, x0 and y0 may be the anchor of a shape and x1 and y1 the anchor of
another shape that has to be moved (200,250) relative to the first one:
rect0 = rect(-5, -5, w=10, h=10, fill=(1.0,0.0,0.0),
transform=transform(x0,y0))

rect1 = rect(-5, -5, w=10, h=100, fill=(1.0,0.0,0.0),
transform=transform(x1,y1))

Execution. Dataflow can have two modes of execution. The first one is interpretation
and the second one is compilation. Interpretation is very useful when one wants to
debug and test one's design. It allows new variables and formulas to be created at run-
time. The counterpart of this flexibility is that it is very costly when it comes to
execution, as it requires a tree traversal and the interpretation of each node each time
a value has to be computed.

The second possibility, when formulas do not change often at run-time, is to use
compilation. The GC implement dataflow compilation by attaching to each variable
the function that contains the formula. The execution speeds up but this scheme forces
the programmer to do a static compilation of the application.

In the previous example, the GC transforms the declarative description into a list of
OpenGL commands. The list of commands contains the two following lines:

glTranslate3f(5.0f, 10.0f, 0.0f);
(…)
glTranslate3f(205.0f, 260.0f, 0.0f);

The GC remembers the dependences between the input variable (‘x0’ for example)
and the produced memory case (‘5.0f’ here). At run-time, when a change occurs, the
executive part of the GC propagates directly the modification towards the memory
that is used to render the scene. Such principle avoids the tests needed to know
whether a variable has changed.

Optimizations

As dataflow is a mathematical language and also a functional one, we can apply two
types of optimizations. Optimizations can be relevant to the semantic of the functions
themselves. For example, writing 'x+x+x+x+x+x' can be transformed into '6*x', thus
reducing the number of operations from five to one (if there is no cache implemented,
the access to a variable is costly and the overall cost is then reduced). The GC can
also find optimizations more relevant to the implementation, as in all languages, so as
to accelerate the time spend inside the propagation of the data.

5 Implementation and Optimizations of the Graphical Compiler

Implementation

We wrote the compiler in the Python language as it allows quick development. Never-
theless, in order to achieve good performances with OpenGL, we wrote the run-time
of the graphics in a C module of Python.

 Graphic Rendering Considered as a Compilation Chain 275

The production of the low-level description of the scene follows standard trans-
formation rules. For each element in the graph, the GC produces the corresponding
elements. Optimizations are made during the productions by testing whether we
should add decorators or not, as seen before.

After the production of the low-level description, the renderer can be executed
asynchronously. We designed our toolkit to be asynchronous so as not to penalize all
the parts of the process if one is slow. The toolkit uses threads and buffers to imple-
ment this mechanism. The list of calls from Python to the run-time uses a strategy
similar to the OpenGL double-buffering mechanism. There are two lists available: the
first is the one which is executed, and is protected from any changes except local
changes coming from the dataflow. The second one allows the compiler to allocate
and free the memory needed and is allowed to be modified by other processes.

Optimizations

The low-level description is what we call a display graph, an abstract tree that repre-
sents the graphical code that will be executed eventually.

Static Optimizations. We have written our low-level language with the help of de-
sign patterns. The help of the design pattern decorator allows the GC to construct the
tree so as to avoid tests while walking through it. For example, if the element does not
contain any scale transformations, the compiler simply does not include the decorator
scale over the element. The produced tree contains the minimum elements needed to
render the scene.

The second possibility offered by this approach is that the compiler can factorize
elements by detecting common subexpressions. For instance, if the same transforma-
tions occur between two groups, it can factorize them into a bigger group containing
the common transformation.

Dynamic Optimizations. Working with a tree allows the GC to make optimizations
during run-time, to implement a Just In Time compiler (JIT). Nevertheless, walking
through the tree has a significant cost in term of instructions to be executed. The time
spent to evaluate the display graph, plus the time needed to transform it into graphic
call, plus the time of execution has to be inferior to a minimum refresh-time rate
(maximum 0.04 seconds per frame to achieve 25 frames per second). To achieve such
performance, the run-time transforms this tree into a list of OpenGL calls. This trans-
formation allows caching of operations that have to be executed. It also puts in cache
all the tests that need to be done. For instance, the programmer can activate or deacti-
vate a part of the tree through a variable. The produced code is empty if the condition
is set to false. By transforming the tree into a list of really executed code, the run-time
of the GC avoids a re-evaluation of this test. If the condition changes the run-time re-
parses the tree in order to execute the right code. This optimization is known as dead-
code elimination.

When a change in the inputs that occurs does not imply a rebuilding of the list of
OpenGL calls, the dataflow propagates the change by modifying the previously pro-
duced code.

276 B. Tissoires and S. Conversy

Other Optimizations. As we have seen, a graphical compiler can make optimizations
over the display graph. The GC can produce both local optimizations and cross-
procedural optimizations as it knows the entire display graph. Because of the lack of
room, we list other techniques that are available in the GC to speed up the rendering
in the light of compiling techniques:

− Common subexpressions: the optimizer can detect such graphical common
subexpressions and factorize them.

− Propagation of the constants corresponds in the graphic field to the operation of
caching a maximum amount of data, most of the time on the graphic device.

− Programmer's hints: the programmer can specify that a non-trivial or non-
detectable optimization concerning his own problem (this optimization corre-
sponds to aliasing or the keyword register in the C language).

− Other JIT optimizations: a Just In Time compiler (JIT) can handle other optimiza-
tions that the static compiler can not discover.

6 Results

We assessed the approach by writing two different applications with the GC. The first
consists in a demonstration of the use of standard widgets to build a WIMP interface
(Fig. 7). This application illustrates scenario number 2. The programmer specifies the
conceptual model by specifying the abstraction of the different elements, and then
gives to the system the transformations needed to compile the elements to SVG. The
GC statically compiles the dependencies and produces the final application. The re-
sulting program contains no interpretation of SVG constructs, as much as a binary
does not contain C constructs. As such, it is closed to the minimum program needed
to implement this sysytem in the C language with OpenGL.

The second one, a radar view displaying planes (Fig. 8), is demanding in terms of
computing power. This application has to display up to 500 planes, each of them
made up of 10 elementary shapes. In fact, this proof of concept can display more than
10000 triangles and handle user events with a very low system load: the framerate is
up to 500 frames per second. A previous version with a run-time in the Python lan-
guage with a JIT enabled only reached 140 frames per seconds. The same code with-
out the dynamic compiler and the programmer hints achieved around 4 frames per
seconds.

Fig. 7. Example of a WIMP application rendered with the help of our GC

 Graphic Rendering Considered as a Compilation Chain 277

Fig. 8. Example of a radar display application rendered with the help of our GC

The GC weighs in 4000 lines of code in Python and the run-time in C is 4000 lines.
Applications using the GC are small: the radar view application is made up of only
500 lines and consists only in the description, as expected. Though more feature com-
plete, a previous radar application written in C++ and OpenGL weighs in 85 000
lines.

7 Related Work

The use of transformations starting from a high-level description has been studied in
the Indigo Project [4]. Contrary to the X11 server, both rendering and interaction are
in charge of the Servir, the server of the Indigo architecture. This idea of transforma-
tions was then extended with the implementation of the set of widgets ARINC 661 [2]
and later by the MDPC model [8].

Fig. 9. Dataflow span in different toolkits

278 B. Tissoires and S. Conversy

Many researchers used dataflow language to describe interactive applications
(Fig. 9). Some of these dataflows handle data from the inputs to the application (In-
putConfigurator [11] or Magglite [14]) while others express graphical constraints
(Garnet/Amulet [18], [20]). In the GC, the dataflow can manage the transformations
from the data and the inputs down to the screen. In [19], the researchers present a way
to reduce the storage of the dataflow, which can be a problem in large applications.

The notion of compilation in graphics was introduced by Nitrous, a compiler gen-
erator for interactive graphics [12]. However, as in [17], the compiler is only pixel-
based, and does not handle the inputs coming from physical devices or from the ap-
plication. LLVM [16], with its OpenGL stack developed by Apple, can efficiently
abstract the description of the interface from the hardware. The JIT included in
LLVM can optimize the different shaders available in order to have the most efficient
implementation.

Finally, dynamic compilation has been studied with languages such as Smalltalk
[9], Self [13], or Java. LLVM can also be executed with a JIT and can do interproce-
dural optimizations [5].

8 Conclusion

In this paper, we have proposed a new approach to graphical rendering, in order to
make it both modular and efficient. We show that an interactive application is a list of
transformations of intermediate graphical languages, which can be considered as a
compilation process. We described how a graphical compiler can help designers and
programmers to implement efficient rendering code. The programmer writes a front-
end of a language describing the objects to be interacted on, and a transformation
function to a high-level graphical API. The graphical compiler can then generate low-
level code that implements the application. During the different transformations, the
GC detects and applies optimizations in order to generate efficient code. Thanks to
the dataflow which is produced at compile time, the dynamic compiler avoids unnec-
essary recompilation at run-time. The latter can take time to optimize the produced
code on the fly.

The architecture we have presented has some limitations. It can not handle dynamic
changes of the structure of the conceptual model. With the radar view, flights are fil-
tered out when they are not visible, and the conceptual model elements are recycled for
new flights. However, implementing a vector graphic editor is not possible with such
description, because it is not possible to know in advance the number of shapes.

Furthermore, the graphical compiler does not handle UI control. Dataflows can
simulate control with tests, but a more general approach is needed, such as state ma-
chines switching dataflow configurations [6].

However, we showed with two examples that the graphical compilation approach
is suitable for a range of applications: static ones, such as WIMP interfaces now found
in cockpits, or semi-dynamic, data-bounded ones, such as radar view. Future work
includes finding a common language to describe intermediate languages and trans-
formations. This approach leads to verifiable semantics of transforms and languages.
We plan to enhance the compiler so as to produce verified code, and make critical
systems safer.

 Graphic Rendering Considered as a Compilation Chain 279

References

1. Aho, V., R., S., Ullman, J.D., Ullman, J.: Compilers: Principles, Techniques, and Tools.
Morgan Addison-Wesley, Boston (1986)

2. Barboni, E., Conversy, S., Navarre, D., Palanque, P.: Model-based engineering of widgets,
user applications and servers compliant with arinc 661 specification. In: Doherty, G.,
Blandford, A. (eds.) DSVIS 2006. LNCS, vol. 4323, pp. 25–38. Springer, Heidelberg
(2007)

3. Bederson, B.B., Grosjean, J., Meyer, J.: Toolkit Design for Interactive Structured Graph-
ics. IEEE Transactions on Software Engineering 30(8), 535–546 (2004)

4. Blanch, R., Beaudouin-Lafon, M., Conversy, S., Jestin, Y., Baudel, T., Zhao, Y.P.: In-
digo : une architecture pour la conception d’applications graphiques interactives dis-
tribuées. In: 17th conference on Conférence Francophone sur l’Interaction Homme-
Machine, pp. 139–146. ACM Press, New York (2005)

5. Burke, M., Torczon, L.: Interprocedural optimization: eliminating unnecessary recompila-
tion. ACM Trans. Program. Lang. Syst. 15, 367–399 (1993)

6. Chatty, S.: Defining the behaviour of animated interfaces. In: IFIP TC2/WG2, pp. 95–111.
North-Holland Publishing Co, Amsterdam (1992)

7. Chatty, S., Sire, S., Vinot, J.-L., Lecoanet, P., Lemort, A., Mertz, C.: Revisiting visual in-
terface programming: creating GUI tools for designers and programmers. In: 17th annual
ACM symposium on User interface software and technology, pp. 267–276. ACM Press,
New York (2004)

8. Conversy, S., Barboni, E., Navarre, D., Palanque, P.: Improving modularity of interactive
software with the MDPC architecture. In: EIS (Engineering Interactive Systems) confer-
ence 2007, joint HCSE 2007, EHCI 2007 and DSVIS 2007 conferences. LNCS. Springer,
Heidelberg (2008)

9. Deutsch, L.P., Schiffman, A.M.: Efficient implementation of the smalltalk-80 system. In:
11th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pp.
297–302. ACM Press, New York (1984)

10. Dourish, P.: Using Metalevel Techniques in a Flexible Toolkit for CSCW Applications.
ACM Trans. Comput.-Hum. Interact. 5, 109–155 (1998)

11. Dragicevic, P., Fekete, J.-D.: The input configurator toolkit: towards high input adaptabil-
ity in interactive applications. In: AVI 2004: working conference on Advanced visual in-
terfaces, pp. 244–247. ACM Press, New York (2004)

12. Draves, S.: Compiler Generation for Interactive Graphics using Intermediate Code. In:
Danvy, O., Thiemann, P., Glück, R. (eds.) Dagstuhl Seminar 1996. LNCS, vol. 1110, pp.
95–114. Springer, Heidelberg (1996)

13. Hölzle, U., Ungar, D.: A third-generation self implementation: reconciling responsiveness
with performance. In: 9th annual conference on Object-oriented programming systems,
language, and applications, pp. 229–243. ACM Press, New York (1994)

14. Huot, S., Dumas, C., Dragicevic, P., Fekete, J.-D., Hégron, G.: The magglite post-wimp
toolkit: draw it, connect it and run it. In: 17th annual ACM symposium on User interface
software and technology, pp. 257–266. ACM Press, New York (2004)

15. Kiczales, G., Lamping, J., Lopes, C.V., Maeda, C., Mendhekar, A., Murphy, G.: Open im-
plementation design guidelines. In: 19th international Conference on Software Engineer-
ing, pp. 481–490. ACM Press, New York (1997)

16. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analysis &
transformation. In: IEEE international symposium on Code generation and optimization,
pp. 75–86. IEEE Press, New York (2004)

280 B. Tissoires and S. Conversy

17. Peercy, M.S., Olano, M., Airey, J., Ungar, P.J.: Interactive multi-pass programmable shad-
ing. In: 27th Annual Conference on Computer Graphics and interactive Techniques Inter-
national Conference on Computer Graphics and Interactive Techniques, pp. 425–432.
ACM Press, New York (2000)

18. Zanden, B.T.V., Halterman, R., Myers, B.A., McDaniel, R., Miller, R., Szekely, P., Giuse,
D.A., Kosbie, D.: Lessons learned about one-way, dataflow constraints in the garnet and
amulet graphical toolkits. ACM Trans. Program. Lang. Syst. 23, 776–796 (1994)

19. Zanden, B.T.V., Myers, B.A., Giuse, D.A., Szekely, P.: Integrating pointer variables into
one-way constraint models. ACM Trans. Comput.-Hum. Interact. 1, 161–213 (1994)

20. Zanden, B.T.V., Halterman, R.: Using model dataflow graphs to reduce the storage re-
quirements of constraints. ACM Trans. Comput.-Hum. Interact. 8, 223–265 (2001)

21. ARINC Specification 661-3 Cockpit Display System Interfaces to User Systems, Aeronau-
tical Radio Inc. (2007)

22. Scalable Vector Graphics (SVG) 1.1 Specification. W3C Recommendation (2003),
http://www.w3.org/TR/SVG/

23. XSL Transformations (XSLT) Version 1.0. W3C Recommendation (1999), http://www.
w3.org/TR/xslt

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 281 – 286, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Towards Specifying Multimodal Collaborative User
Interfaces: A Comparison of Collaboration Notations

Frédéric Jourde1, Yann Laurillau1, Alberto Moran2, and Laurence Nigay1

1 Grenoble Informatics Laboratory (LIG)
38042, Grenoble, France

 {fjourde,laurilla,nigay}@imag.fr
2 Facultad de Ciencias, UABC,

Ensenada, Mexico
alberto_moran@uabc.mx

Abstract. Interactive systems including multiple interaction devices and surfaces
for supporting the collaboration of a group of co-located users are increasingly
common in various domains. Nevertheless few collaborative and multimodal in-
terface specification notations are proposed. As a first step towards a notation for
specifying a design solution prior to its software design and development, we
adopt an empirical approach. We applied and compared four existing notations for
collaborative systems by considering a case study, namely, a system for support-
ing informal co-located collaboration in hospital work. This paper reports the con-
clusions from this empirical comparison.

Keywords: CSCW, multimodality, multi-devices, specification notation.

1 Introduction

The multimodal domain, including multi-surface and multi-device areas, has expanded
rapidly. Significant achievements have been made in terms of both modalities and mul-
timodal applications especially for Computer-Supported Cooperative Work such as co-
located collaboration in a smart room. Real collaborative multimodal systems are now
built in various domains [12] including the medical one [10]. Moving away from re-
search prototypes, we now observe the need for specifying such interactive systems
especially in the context of industrial projects. In this article, we address this problem of
specification of multimodal collaborative User Interfaces (UI).

Specifying user interfaces is a well-established discipline and various notations
have been proposed for specifying the tasks, the dialog elements, the sequences of
interaction, concrete UI elements, dynamics of group behavior and so on. Such a
variety of notations both in terms of their descriptive qualities, their syntactic struc-
tures and the amount of support that they offer according to the development phases
has already been highlighted ten years ago in [5]. In [9], the review of notations for
interaction design underlines that the most common interaction representational needs
are covered by four models: task, domain, abstract and concrete UI. Many of these
notations are dedicated to single user WIMP interfaces and we are interested in study-
ing the proposed extensions of these notations and more recent notations dedicated to

282 F. Jourde et al.

collaborative and multimodal UI. To do so, our approach for studying existing nota-
tions for specifying multimodal collaborative UI is in the first instance empirical: we
start from existing collaboration notations and we apply them for specifying a case
study: a system for supporting informal co-located collaboration in hospital work.

2 Empirical Comparison of Collaboration Notations

The relationships between collaborative and multimodal interaction open a vast world
of possibilities that has not been systemically explored in terms of specification nota-
tions. We aim at going further than considering multimodal aspects such as the CARE
properties [2] for the concrete UI and collaborative aspects for the abstract UI. In our
empirical comparison, we first focus on existing notations for specifying collaborative
UI. Since we are interested in also modeling multimodal interaction, while studying
collaborative UI specification notations, we also examine the power of expression of
the notations for specifying concrete UI. A complementary approach to ours would
be to start from multimodal UI specification notations.

2.1 Scope of the Comparative Study

In [1], three dimensions for evaluating an interaction model are described: descriptive
power (i.e., ability to describe a UI), evaluative power (i.e., ability to help assess mul-
tiple design alternatives) and generative power (i.e., ability to help designers create
new designs). As a starting point for our comparative study, we are focusing on the
descriptive power of UI specification notations. Their impact on the design including
their evaluative and generative powers will be studied afterwards. Moreover, our
study does not aim at evaluating the selected notations that can be studied in light of
the criteria identified in [5] and of the notational dimensions of the framework “cogni-
tive dimensions of notations” [4]. Since the selected notations differ in their descrip-
tive qualities, some focusing on collaborative tasks while others on the users’ roles
and on collaborative situations, our goal is to assess their complementary aspects and
their projected ability to specify a multimodal collaborative user interface.

2.2 Rational for the Selected Notations

Our review of existing collaboration notations highlights the fact that the notations
such as CTT [11], CUA [4], GTA [15] and MABTA [8], mainly focus on both indi-
vidual and collaborative tasks. Such notations aim at accommodating several aspects
of collaborative work situations into a task specification and thus extend task specifi-
cation with contextual information. Some notations also focus on other aspects than
individual and collaborative tasks such as TKS [7] which focuses on users’ knowl-
edge involved in task behavior and UML-G [14] on modeling shared data.

Amongst the existing notations, a first way for selecting the ones to be applied to
our case study would be based on the syntactic structure of the notations (i.e., graphi-
cal, tabular, textual approaches) as in [6]. This solution was not satisfying since most
of the notations imply several types of representations. Moreover since our study
focuses on the specification of a collaborative user interface, we did not consider the
notations that are not dedicated to interaction tasks and system behaviors, although

 Towards Specifying Multimodal Collaborative User Interfaces 283

they may be complementary to the other notations. We therefore exclude TKS. More-
over although CUA is focusing on individual and collaborative tasks in the context of
scenarios, its main focus is on modeling the tasks for the needs of groupware evalua-
tion. As a conclusion, we selected four notations, CTT, GTA, MABTA and UML-G
that involve different background disciplines. UML-G is an extension of a standard in
Software Engineering. CTT is a well established notation for task analysis in Human-
Computer Interaction, while GTA and MABTA aims at extending task analysis with
elements from Social Sciences (social psychology, sociology) in order to capture key
elements of the nature of groupworking.

3 Specifications Based on the Selected Notations

We apply the four selected notations to specify a collaborative multi-surface [10] that
provides a support for informal co-located collaboration by allowing multiple users to
study medical documents. As highlighted by the field study described in [10], hospital
medical workers including physicians and medical interns are very mobile and need to
opportunistically and informally establish co-located collaboration while focusing on a
particular patient. Using the system, two physicians can share extracts from a patient
medical displayed both on the large screen (i.e., Public Screen) and on the PDA screen
(i.e., Private Screen): (i) on the public screen, physicians can only annotate the medical
information using a virtual pen ; (ii) on the PDA, a physician can initiate a shared ses-
sion, select documents to share, edit documents and stop a session. For illustrative pur-
pose, we partly present the CTT specification of our case study while the complete
specifications along the four notations are available at [16]. Applying CTT, collabora-
tive activities are described at a high-level of abstraction through a collaborative task
tree; individual task trees (one per role) describe concrete tasks. A collaborative task
tree contains collaborative tasks and high-level individual tasks, related to one of the
multiple individual task trees. Figure 1 shows the collaborative task tree for our case
study and one individual task tree associated with the public screen user’s role. The

 Collaborative part

Fig. 1. CTT collaborative and public display (PS user’s role) individual task trees

PS user role

284 F. Jourde et al.

CTT notation includes five types of tasks: system, mental, abstract, individual (user) and
collaborative tasks. A collaborative task is an abstract task that must be composed of
individual tasks. Relation operators between tasks are inherited from LOTOS. In par-
ticular, Figure 1 highlights the coupling between the PDA and PS (|[]| operator) and the
document sharing between users ([]>> operator).

Difficulties or limitations identified by applying CTT include the fact that the links
between the tasks of different trees are not explicit (i.e., no role is specified for a task)
and are only deduced from the task identifiers. Moreover to specify the modalities of
a concrete task, the only means is to use the task identifier (e.g., Annotate document
with pen on PS). In addition, the notation does not provide any means of representing
shared objects and of specifying a policy for the sharing. For example, we are able to
specify that the telepointer is controlled by the PDA but we are not able to specify
that the telepointer can be observed by both roles.

4 Conclusions from the Comparative Study and Future Work

About role specification, the four notations explicitly support user’s roles specifica-
tion in working group. While GTA and MABTA advocate a dedicated representation
to roles and relationships between users, we describe roles using UML-G with a class
diagram and the involved objects for each role. As opposed to UML-G that focuses on
the manipulated objects per role, CTT describes the tasks per role in individual task
trees (Figure 1).

About group and individual work specification at abstract level, on the one hand,
CTT and MABTA advocate a dedicated representation that combines collaborative
tasks, and individual tasks that take part directly in the group work coordination, such as
start shared session in Figure 1. However, CTT operators refine the MABTA “influ-
ence” relation for the case of temporal interdependencies only. As pointed out in [3], in
addition to temporal interdependencies related to the activity level, interdependencies
are related to the object level and describe the multiple participants’ access to the same
set of objects. In [13], they define a set of generic mechanics of collaboration as elemen-
tary abstract tasks for such coordination issues surrounding how objects are assessed.
Such elementary abstract tasks are generic since they are common to a variety of social
and organizational work groups. For example one abstract task “Obtain resource” could
be part of the CTT and MABTA group work representations.

On the other hand, GTA and UML-G represent together group and individual
work. Using GTA, it is possible to annotate each task with the roles and the manipu-
lated objects. As for GTA, with UML-G, group work is implicitly described within
the class diagram by different roles manipulating the same object. Collaborative ac-
tivities are further described in the UML-G activity diagram that highlights the rela-
tionships between the individual tasks over time.

Individual tasks are described hierarchically in CTT, MABTA and GTA for each
role. MABTA refines the work group tasks into sub-tasks while maintaining the col-
umns for describing the roles and adding new individual tasks that are not related to
the group work. GTA advocates only one representation for both group and individual
works. Links between tasks of different roles can be specified by triggered task and
hence corresponds to the “influence” relation of MABTA. As opposed to MABTA

 Towards Specifying Multimodal Collaborative User Interfaces 285

and GTA, CTT does not explicitly describe the links between the tasks of different
roles. This link is deduced from the group work representations that share tasks with
the individual task trees (Figure 1). In contrast to the hierarchical refinement approach
of CTT, MABTA and GTA, the activity diagram in UML-G shows individual work
and interdependencies with respect to time and roles. Moreover only GTA and UML-
G enables us to represent task flows respectively in terms of activity diagram and
sequence diagram.

Finally, about group and individual work specification at concrete level, CTT and
MABTA advocate the same representation for abstract and concrete tasks. The GTA
elementary abstract tasks are described using NUAN which enables a precise descrip-
tion of both users’ actions, system feedback and dialogue states. For UML-G, con-
crete tasks can be described by sequence diagrams along with state-transition dia-
grams. For each object, the users’ actions on it as well as its reactions are described.
Nevertheless such a specification would be extremely tedious for a complete user
interface.

To conclude, by applying four existing notations for specifying a simple groupware
where two users are working on a medical image using a PDA and a public display
enables us to identify some complementary aspects in the induced representations as
well as some missing aspects. We underline three key issues from this empirical
study. Firstly, the distinction between group work and individual work (per role) is
useful in a specification for describing at different level of detail (i.e., abstract and
concrete) a collaborative user interface from its two facets, the group and the users.
However a unified representation of group and individual work enables us to depict
interdependencies between users with respect to time and roles. Classical hierarchical
representations such as CTT are suitable for individual tasks, while group work repre-
sentations need to include specific aspects of collaboration such as in MABTA where
tasks are decorated with concepts from coordination theory. Secondly, temporal rela-
tionships between tasks for describing group work are not sufficient: Temporal inter-
dependencies are at the activity level and interdependencies related to the object level
are required for describing the multiple users’ access to the same set of objects. UML-
G focusing on shared objects can be used for describing such interdependencies.
Thirdly, the specification of concrete multimodal interaction as concrete tasks in-
volves extending the selected notations dedicated to WIMP user interfaces. For ex-
ample, it was not possible to explicitly specify the redundancy (one of the CARE
properties of multimodality [2]) of the display (PDA and public display) of our case
study. Further studies must be done on the description of tightly coupled multimodal
interaction (a concrete multimodal group task corresponding to an abstract group task)
and on loosely coupled multimodal interaction (concrete multimodal individual tasks
corresponding to abstract individual tasks that define a composed abstract group task).

As further work, we plan to experiment on the complementary usage of the studied
notations on another case study, namely a collaborative and multimodal military
command post. The focus will be on studying the links between the activity (task) and
shared resource (object) aspects and on extending the notations in order to depict
multimodal interaction. For multimodal interaction, distinguishing abstract/concrete
tasks as well as group/individual tasks allows us to identify: (1) tasks that require
tightly coupled multimodal interaction when two users are continuously engaged with
the accomplishment of physical actions for realizing a concrete group task. (2) Tasks

286 F. Jourde et al.

that require loosely coupled multimodal interaction when two users are performing
actions along different modalities for realizing two concrete individual tasks that
define an abstract group task. For specifying these two types of multimodal group
tasks, one of our research avenues is to study extensions of the ICARE notation [2].

References

1. Beaudouin-Lafon, M.: Designing Interaction, not Interfaces. In: AVI 2000, pp. 15–22.
ACM Press, New York (2000)

2. Bouchet, J., Nigay, L., Ganille, T.: ICARE Software Component for Rapidly Developing
Multimodal Interfaces. In: ICMI, pp. 251–258. ACM Press, New York (2004)

3. Ellis, C.A., Wainer, J.,, J.: A Conceptual Model of Groupware. In: CSCW 1994, pp. 79–
80. ACM Press, New York (1994)

4. Green, T.: Instructions and descriptions: some cognitive aspects of programming and simi-
lar activities. In: AVI 2000, pp. 21–28. ACM Press, New York (2000)

5. Johnson, C.W.: The Namur Principles: Criteria for the Evaluation of User Interface Nota-
tions. In: DSVIS 1996. Springer, Heidelberg (1996)

6. Johnson, C.W.: The Evaluation of User Interface Design Notations. In: DSVIS 1996, pp.
188–206. Springer, Heidelberg (1996)

7. Johnson, H., Hyde, J.: Towards Modeling Individual and Collaborative Construction of
Jigsaws Using Task Knowledge Structures. In: TOCHI, vol. 10(4), pp. 339–387. ACM
Press, New York (2003)

8. Lim, Y.K.: Task models for groupware and multitasking: Multiple aspect based task
analysis (MABTA) for user requirements gathering in highly-contextualized interactive
system design. In: TAMODIA 2004, pp. 7–15. ACM Press, New York (2004)

9. Markopoulos, P., Marijnissen, P.: UML as a representation for Interaction Design. In:
OZCHI 2000, pp. 240–249 (2000)

10. Mejia, D.A., Morán, A.L., Favela, J.: Supporting Informal Co-located Collaboration in
Hospital Work. In: Haake, J.M., Ochoa, S.F., Cechich, A. (eds.) CRIWG 2007. LNCS,
vol. 4715, pp. 255–270. Springer, Heidelberg (2007)

11. Mori, G., Paterno, F., Santoro, C.: CTTE : Support for Developing and Analyzing Task
Models for Interactive System Design. In: TOSE, vol. 28(8), pp. 797–813. IEEE Computer
Society Press, Los Alamitos (2002)

12. Oviatt, S., et al.: Designing the user interface for multimodal speech and gesture applica-
tions. In: HCI 2000, vol. 15(4), pp. 263–322. Taylor & Francis, Abington (2000)

13. Pinelle, D., Gutwin, C., Greenberd, S.: Task Analysis for Groupware Usability Evaluation.
In: TOCHI, vol. 10(4), pp. 281–311. ACM Press, New York (2003)

14. Rubart, J., Dawabi, P.: Shared data modeling with UML-G. In: IJCAT. Inderscience,
vol. 19 (3/4), pp. 231–243 (2004)

15. Veer, G., Welie, M.: Task Based Groupware Design: Putting Theory into Practice. In: DIS
2000, pp. 326–337. ACM Press, New York (2000)

16. http://iihm.imag.fr/laurillau/four-notations-comparison.pdf

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 287 – 293, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Towards Characterizing Visualizations

Christophe Hurter1,3 and Stéphane Conversy2, 3

1 DGAC DSNA DTI R&D 7, Avenue Edouard Belin 31055, Toulouse, France
christophe.hurter@aviation-civile.gouv.fr

2 ENAC LII 7, Avenue Edouard Belin 31055, Toulouse, France
stephane.conversy@enac.fr

3 IHCS – IRIT, Université Paul Sabatier,
118 route de Narbonne, 31062 Toulouse Cedex 4, France

Abstract. The ability to characterize visualizations would bring several benefits to
the design process. It would help designers to assess their designs, reuse existing
designs in new contexts, communicate with other designers and write compact
and unambiguous specifications. The research described in this paper is an initial
effort to develop a theory-driven approach to the characterization of visualiza-
tions. We examine the Card and Mackinlay characterization tool and we show its
limitations when it comes to performing a complete characterization.

Keywords: Information Visualization, Evaluation Tools, Design, Graphical
Coding.

Topics: Development Processes, Verification and Validation, Specification of
Interactive Systems.

1 Introduction

Research in HCI has led to the design of methods and tools to evaluate the effective-
ness of interfaces. A posteriori methods rely on user tests to check if an interface is
usable. They involve developing parts of the interfaces, which are costly. A priori (or
heuristic) methods use models of the system and the user to predict effectiveness
before the development of the interface. A priori methods are less expensive, and they
enable designers to design and compare a large set of solutions and help them produce
better interfaces. A priori methods include the keystroke-level model, to help compute
the time needed to perform an interaction [5], or the CIS [1] model, which extends
keystroke by taking into account the context in which the interaction takes place. Both
keystroke and CIS are predictive models, i.e. they can help compute a measurement
of expected effectiveness, and enable quantitative comparison between interaction
techniques. These tools have proved to be accurate and efficient when designing new
interfaces. Descriptive models only help describe phenomena. They are less powerful
than predictive models, but are nonetheless very valuable, since they help designers
organize their thinking along relevant dimensions. Even if not supported with quanti-
tative data, designers are able to make better design decisions since they use relevant
dimensions of analysis. For example, the cognitive dimension framework [6] is an
analysis tool that helps designers to recognize patterns of important interaction di-
mensions, discuss them with other designers using the same vocabulary, and help
them find the right solutions during the design process.

288 C. Hurter and S. Conversy

Although methods do exist for a priori evaluation of interaction effectiveness, very
few exist for a priori evaluation of visualizations. The lack of efficient models to
describe visualization hinders the design process. For example, designers sometimes
inappropriately transpose the existing features of a particular visualization to another
one, because they have no means of analyzing visualizations in detail, so as to really
understand them, and they have no way of comparing visualizations. In addition, the
lack of description tools makes specification writing tasks very difficult. Many speci-
fications use prose to describe a visualization, which is cumbersome to read, subjec-
tive and error-prone: we observed during our engineering projects that there were a lot
of differences between an expected system that we designed and a delivered system
coded by a third party.

This paper describes the first steps towards building a method to describe visuali-
zation systematically. In particular, we try to characterize visualizations, i.e. to find a
precise and compact description that unveils similarities and differences, and allows
for comparison. We seek to answer the following questions: what information is dis-
played on the screen? How many information are displayed? How is information
displayed? At first sight, it seems that the answer is trivial: the information on the
screen is exactly what the designer wanted to put there when he designed the visuali-
zation. However, we will see that the answer is more complex, as it does not take into
account information built up from our perception system. We want to insist on the
fact that we do not try to assess the effectiveness of different representation. We only
identify what is displayed and not how well a user perceives it.

To bridge the characterization gap, we use the Card and Mackinlay model from the
Information Visualization field (InfoVis). We apply this tool to particular visualiza-
tion, and show the usefulness of the result. Finally, we show why this tool is not satis-
factory, especially when characterizing emerging information.

2 Characterization Model: Card and Mackinlay

Card and Mackinlay [4] (C&M) attempted to establish comparison criteria of visuali-
zations. They proposed a table for each transformation function (Table 1). The C&M
table is completed with the notations in Table 2.

Table 1. C&M representation model

 automatic
perception

Controled
 perception

Name D F D’ X Y Z T R - [] CP

Table 2. C&M Model notations

S Size Lon, Lat Longitude, Latitude
Sh Shape P Point
f Function O Orientation
N, O, Q Nominal , Ordered, Quantitative

 Towards Characterizing Visualizations 289

The horizontal rows correspond to the input data. The column D and D’ indicate
the type of data (Nominal, Ordered or Quantitative). F is a function or a filter which
transforms or creates a subset of D. Columns X, Y, Z, T, R, -, [] are derived from the
visual variables of Bertin [3]. The image has four dimensions: X, Y, Z and time, T. R
corresponds to the retinal perception which describes the method employed to repre-
sent information visually (color, form, size,etc.). The bonds between the graphic enti-
ties are noted with ’-’, and the concept of encapsulation is symbolized by ‘[]’. Finally,
a distinction is made if the representation of the data is treated by our perceptive sys-
tem in an automatic or controlled way. Card and Mackinlay depicted some well-
known InfoVis visualizations. However, they did not explicitly demonstrate how to
use their model, nor its usefulness. We applied this model to visualization from Air
Traffic Control (ATC), which we describe in the next section.

3 Rich and Dynamic Visualizations from ATC

Air traffic controllers aim to maintain a safe distance between flights. In current ATC
environments, air traffic controllers use several visualization systems: radar view,
timelines, electronic strips, meteorological views, supervision, etc. Each visualization
is rich and dynamic: it displays numerous visual entities that evolve over time. These
visualizations are complex and each visual detail is important. The following section
details the design of two Radar visualizations.

3.1 ODS: The French Radar Screen

ODS is the main French radar view for air traffic controllers. It is a top view of the
current flying aircrafts. Its main goal is to display aircraft positions and to help control-
lers to space aircraft beyond the safety minima.

Fig. 1. The ODS comet of an evolving aircraft, the image exhibits direction and acceleration
changes

The radar track presents aircraft positions, speed (speed vector), name, altitude and
speed as text (Fig. 1). The design of the comet is built with squares, whose size varies
with the recentness of the aircraft’s position: the biggest square displays the last posi-
tion of the aircraft, whereas the smallest square displays the least recent aircraft posi-
tion. The Speed Vector (SV) is a line which starts from the current aircraft position
and ends at its future position (3 minutes later). The X axis of the screen codes the
latitude of each aircraft; the Y axis of the screen codes the longitude of each aircraft.
We applied the C&M characterization of the comet in Table 4 and of the speed vector
in Table 3.

290 C. Hurter and S. Conversy

3.2 ASTER: A Vertical Visualization

ASTER [2] is a vertical view of the current position of an aircraft. The X axis of the
screen codes the current aircraft distance from a reference point (IAF) and the Y axis
of the screen codes the Flight Level (FL or altitude) of each aircraft.

Fig. 2. Aster projection plan (left) and comet (right)

The head of the comet shows the position of the aircraft in the vertical view. Its ori-
entation codes the aircraft vertical speed (or its incidence) and its length codes the
projected aircraft speed (Fig. 2). We applied the C&M characterization of the ASTER
comet in Table 4.

4 Applying C&M Model

This section deals with the use of the C&M model. First, we show how the C&M
characterization enables to compare the ASTER comet and the Speed Vector. Second,
we explain why this model is a partial characterization, especially because it lacks
characterization of emerging data. Third, we define the notion of ‘emerging data’.
Finally, we explain why the transformation function alone is not sufficient to fully
perform a characterization of static visualization.

4.1 Unveiling Similarities: Success

The characterization of the radar speed vector (Table 3.) shows that its size or length
changes with the aircraft’s speed.

As we can see by comparing Table 4 and Table 3. , the same information is coded by
the length of the ASTER comet and by the speed vector of the radar’s comet. The
ASTER comet is thus equivalent to the radar’s speed vector, modulo a translation.

Designers and users use the term comet to describe the aircraft position in ASTER
visualization, but the ASTER comet has not the same semantic as the ODS comet.

Table 3. C&M Speed vector characterisation

Name D F D’ X Y Z T R - [] CP
speed Q f Q S
direction Q f Q O

 Towards Characterizing Visualizations 291

Table 4. C&M ASTER Comet characterization

Name D F D’ X Y Z T R - [] CP

Plot
Lat Lon
(QxQ)

f Q P

Sh
ap

e

Afl Q f Q P
Vert. speed Q f Q O

speed Q f Q S

Table 5. C&M Radar Comet characterization

Name D F D’ X Y Z T R - [] CP

X QLon f Q Lon P

Y QLat f Q Lat P

T Q f(Tcur) Q E
m

er
gi

ng

Sh
ap

e

This mistake can lead to false information being perceived: for instance, the tail of the
ASTER comet is not a previous aircraft position. As a first result, we show the usefulness
of characterizing visualizations: it is the characterization and the comparison which al-
lows us to link two visualizations, and thus to give elements of analysis to the designer.
This result highlights the importance of carefully analyzing what is displayed in order to
make perceivable the right information when building and justifying a design.

4.2 Unveiling Differences: Failure

In the ODS comet, the last positions of the aircraft merge by Gestalt continuity effect
(alignment and progressive size increase of squares). A line does appear with its par-
ticular characteristics (curve, regularity of size increasing of the past positions, etc). In
this case, it is not possible to characterize the radar comet as a single graphic entity
using the C&M transformation model. But we can characterize the shapes that build
the comet. With this intention, we introduce the concept of current time (Tcur: the
time when the image is displayed). The size of the square is linearly proportional to
current time with respect to its aging. The grey row and column are two additional
items from the original C&M model (Table 5).

However, the characterization cannot take into account the controllers’ analysis of
the evolution of aircraft latest positions (speed, evolution of speed and direction). For
instance, in Fig. 1, the shape of the comet indicates that the plane has turned 90° to
the right and that it has accelerated (dots spacing variation). These data are important
to the air traffic controller. The comet curvature and the aircraft acceleration can not
be characterized with the C&M model because they constitute emerging information
(there is no raw data called ‘curvature’ to design a curving comet). A precise defini-
tion of ‘emerging’ will be given in the next section.

4.3 Emerging Data

In Fig. 3, raw data are transformed with many Transformation Functions to
the view. They are displayed and then perceived by the user as visual entities. In an

292 C. Hurter and S. Conversy

efficient design, the perceived data and the raw data are the same. If there are more
Raw Data (RD) than Perceivable Data (PD), the non-perceived data are useless. As
we said earlier, the emerging data are perceived data which are not transformed from
raw data, which means that there are more perceived data than raw data. The ODS
comet curvature is an example of emerging data; there is no item of raw data named
‘curvature’ that needs to be transformed to the view, even if we can perceive the air-
craft rotation tendency. Pd-Rd is a characterizing dimension (we call it the level of
integration) which helps us to characterize a design (Fig. 3).

If PD – RD < 0 => reduce RD
If PD – RD = 0 => balanced design
If PD – RD > 0 => emerging data

Fig. 3. Emerging Data

4.4 Characterizing with Emerging Data

If we consider the amount of coded information as a design efficiency dimension, the
C&M model rates the ASTER comet higher than the ODS comet (Table 6). There-
fore, we may think that the ASTER comet codes more information than the ODS
comet. However, we have already explained that emerging data are not listed with the
C&M model. Even with emerging data, this characterization is still incomplete, as the
dynamic of the image codes additional information. When the visualization is up-
dated, the ASTER comet evolves. The information about change is visually coded;
the user can perceive the movement and thus perceive the aircraft’s tendency. Hence,
ODS and ASTER comet code the same amount of information (Table 7).

Table 6. ASTER and ODS coded information with C&M model

ASTER coded information ODS coded information
Aircraft position Aircraft position

Flight Level Time of each position
Vertical speed

Horizontal speed

Table 7. ASTER and ODS information with C&M model and emerging data

ASTER coded information ODS coded information
Aircraft position Aircraft position

Flight Level Time of each position
Vertical speed Aircraft speed

Horizontal speed Aircraft tendency (left, right)
Tendency (animation) Aircraft acceleration

 Towards Characterizing Visualizations 293

5 Conclusion

Whereas Card and Mackinley depicted some InfoVis visualizations without explicitly
demonstrating how to use their model, we have shown the practical effectiveness of
the C&M model when performing the ASTER comet and the ODS speed vector com-
parison. Although the C&M tables make visualizations amenable to analysis as well
as to comparison, this model does not allow essential information to be highlighted
for designers, and does not allow any exhaustive comparison of different designs. In
this article, we managed to apply the C&M model. We extended this model with the
characterization of emerging data. The ODS comet is richer than the Aster comet
(when comparing the amount of coded information), although the characterization of
C&M seems to indicate the opposite. The wealth of information transmitted by each
representation is thus not directly interpretable in the characterizations.

Designers need to be able to evaluate and reuse their work, as well as to communi-
cate effectively. This work is an initial attempt to meet these needs by giving them the
supporting tools to measure their design. A tool that is descriptive, predictive and
prescriptive would be a valuable aid to designers. As a descriptive tool, visualization
characterization and issues related to it form the core of the present paper. Predictive
tools may forecast the visual coded information with a given visualization, while
prescriptive tools have the ability to find a solution to a specific problem. There are
currently no such tools in existence, and our goal is to converge on such a solution.

References

[1] Appert, C., Beaudoiun-Lafon, M., Mackay, W.: Context matters: Evaluating interaction
techniques with CIS model. In: HCI 2004 (2004)

[2] Benhacene, R.: A Vertical Image as a means to improve air traffic control in E-TMA. USA,
DASC California (2002)

[3] Bertin, J.: Graphics and Graphic Information Processing. deGruyter Press, Berlin (1977)
[4] Card, S.K., Mackinlay, J.D.: The Structure of the Information Visualization Design Space.

In: Proc. Information Visualization Symposium 1997 (1997)
[5] Card, S.K., Moran, W.P., Newell, A.: The keystroke-level model of user performance time

with interactive systems. Communication of the ACM 23 (1980)
[6] Green, T.R.G.: Instructions and Descriptions: some cognitive aspects of programming and

similar activities. In: AVI 2000 (2000)

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 294 – 299, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Towards Usability Evaluation
for Smart Appliance Ensembles

Gregor Buchholz and Stefan Propp*

University of Rostock, Institute of Computer Science, Albert Einstein Str. 21,
18059 Rostock, Germany

{gregor.buchholz, stefan.propp}@uni-rostock.de

Abstract. Smart environments comprise users and devices to form ad-hoc an
ensemble and assist the users to fulfill their tasks more efficiently and more
conveniently. This introduces new challenges for usability evaluations. To cope
with theses issues, we propose the application of task models. Following this
approach the behavior of the users can be interpreted as a trace through the cor-
responding task model. We discuss our method of capturing, visualizing and
analyzing traces through task models within smart environments. The paper
provides the first results of a prototypical implementation.

Keywords: Smart Appliance Ensembles, Task Models, Usability.

1 Specifics of Usability Evaluation in Smart Environments

According to [12] we define a smart environment (SE) as being capable of gathering
and applying knowledge about the environment and its occupants so as to provide
automated assistance in reaching goals. Automation in this context can be described
as a repeated cycle of “perceiving the state of the environment, reasoning about the
state together with task goals and outcomes of possible actions, and acting upon the
environment to change the state” [1]. A main characteristic of smart (or pervasive)
environments as ensembles of smart (or intelligent) devices operating as a coherent
unit is their effective invisibility to the user [1]. Furthermore, we strongly emphasize
the cooperative aspect of the use of smart environments. Out of this, the challenge of
developing, applying and evaluating adequate usability test methods emerges. Evalua-
tion methods for measuring the usability of single devices are widely spread and, of
course, necessary to be applied on every single device in the ensemble. Beyond this,
the combination of several devices, linked by an intelligent authority that coordinates
the devices’ funtionalities affords a lot of aspects to be evaluated. Usability “just
means making sure that something works well” [5]. When dealing with the usability
of smart environments it has to be ensured that the automatically initiated actions are
based upon an appropriate and correct collection of knowledge about the environ-

* Supported by a grant of the German National Research Foundation (DFG), Graduate School

1424, Multimodal Smart Appliance Ensembles for Mobile Applications (MuSAMA).

 Towards Usability Evaluation for Smart Appliance Ensembles 295

ment’s state and its actors, a reliable and learning component to interprete the users’
intentions, and proper interaction modalities to initiate or (in the worst case) revert
actions caused by misinterpretation of sensor data or faulty knowledge affecting the
intention recognition in an unfavorable way.

A lot of work has been done in the field of employing task models in usability tests
of interactive systems [3]. Among others, Paternò describes the use of task models
within the evaluation of mobile applications [8], providing methods and tools for
conducting evaluations and analyzing the results by presenting the collected data in
several visualizations. As we attach importance to the idea of basing both the devel-
opers’ and the usability experts’ work not only on the same concepts but on the same
artifacts as well, an integrated tool support is presented for developing and testing
task models and evaluating systems that are built onto them.

2 Model-Based Design of Smart Environments

Within the domain of HCI task modeling is an established technique. Originally, task
models were only used to capture the structure of tasks a user has to fulfill. Subse-
quent research efforts developed methods to also use task models as an initial model
for model-based development of interactive systems, particularly UI development [9].
Some recently developed approaches also apply task modeling for the model-based
design of smart environments.

Trapp et al. [11] describe the capabilities of each device with a task model chunk
(device functionality model, DFM). When a new device connects to the room infra-
structure this DFM fragment is added to the current task model (room task model,
RTM). The combination of available DFMs provides some new combined function-
alies, e.g. a scanner and a printer offer a combined copying functionality. Sinnig et al.
[10] suggest the “Task-Constraint Language” (TCL). Every user in the room is de-
scribed by a task model and additional constraints specify the dependencies of col-
laboration, e.g. that person “A” finishes his presentation, to give person “B” the floor.
Feuerstack et al. [2] enhance the task model notation CTT to serve as a runtime
model. For instance domain concepts are annotated and an object flow is modeled.
Different users’ task models are synchronized with domain objects.

Our objective is to provide usability evaluation methods independent of a specific
modeling technique. Therefore we define an evaluation scenario as a set of users and
devices, each charatarized by properties and specific task models. Every user owns
one or more roles and every role is described by a certain task model. Every device is
associated with one or more types described by a set of properties and a usage model
in a CTT like notation, which defines a set of task sequences a user can perform with
the specific device type. To evaluate a smart environment based on a specific model-
ing technique, the model artefacts stored in the devices are firstly gathered. Subse-
quently the task model chunks, which describe user behavior and device usage, are
mapped to a CTT like notation as used in the evaluation tool and additional informa-
tion is annotated. The aim is to track the interaction between user and environment
and validate the interaction according to the model in an analysis stage.

296 G. Buchholz and S. Propp

3 Model-Based Usability Evaluation

Due to the intended relative independence from a specific modeling technique and the
early development stage of our environment a test setup is suggested wherein at least
two experimenters act as mediators between the smart environment room and the task
model interpreter. Such Wizard-of-Oz experiments are a common technique for early
stage tests of window based software systems and have been conducted to evaluate
speech-based ubiquitous computing systems with natural language interaction [4, 6],
among others. As described in the following, experimenters in our evaluation ap-
proach have to bear a little more responsibility than just to mediate between the ob-
served environment and the task model interpreter.

The goals of the evaluation can be devided into two subgoals: One aim is to validate
the devices’ and roles’ task models and the other one is to identify weak points in the
environment’s sensors and the interpretation of the users’ behavior. We will outline the
procedure of a usability evaluation and point out, which kinds of problems are addressed.

The evaluation preparation includes the definition of a scenario that is to be carried
out by one or more users in the smart environment room. Therefore, the task models
of all devices and roles participating in the proposed scenario are gathered and a
model describing the scenario has to be developed. This task model is composed of
subtrees of the devices’ and roles’ models and augmented with new inner nodes to
structure the task model chunks according to the scenario’s intention and define hier-
archical and temporal relations between them.

The users taking part in the evaluation are now instructed to fulfill the tasks de-
fined in the scenario. They do not know the complete task models in detail but only
the goal and a list of subgoals so as to avoid them to behave more unnatural than
inevitable.

During the evaluation the experimenters are provided with all user movement in-
formation that is produced by the sensors in the smart environment room, video
streams from cameras placed in the SE and an audio stream to keep track of the users’
activities. Furthermore, the current states and properties of the devices are displayed.
All these data flows are recorded to be used in subsequent analysis, too. We devel-
oped an Eclipse plug-in to simulate multiple task trees describing a role’s action or a
device’s capabilities and functions. An experimenter can define a set of task trees for
an evaluation and activate the simulations simultaneously. Each time the experimenter
observes an action he journalizes it using the task model simulation (see figure 1).

We distinguish three situations that can occur during the test session:

1. In one case, the action executed by a user with or without the help of a device is
valid regarding the current state of the according task model simulation(s). The ex-
perimenter then only has to click in the appropiate task model tree(s) and select
“Run Task” (executing a sequence of “Start” and “Stop” immediately), “Start
Task”, “Stop Task” or “Crash Task” respectively in the popup menu of the accord-
ing task node(s) to execute a simulation step.

2. The experimenter may notice the starting or stopping of a task that can not be
started or stopped at that time due to the modelled temporal relations in the task
model. For example, the user may start a task that is disabled in the simulation
because another task is modelled to be finished before. If so, the popup menu

 Towards Usability Evaluation for Smart Appliance Ensembles 297

provides “Forced Start” and “Forced Stop” items to produce an entry in a protocol
that lists behavior not covered by the modelled task trees. An input field for enter-
ing a comment is offered. In figure 1 these items are disabled because the clicked
task “Show next slide” can be started, actually.

3. The third case is the occurrence of tasks not modelled at all but observed in the test
session. For these situations a panel is provided for entering time stamped actions,
saved in a protocol as well.

Another experimenter is responsible for initiating the effects on devices in the

SE. Tasks that are marked as system tasks in the devices’ models are started and
stopped in the simulation and delivered as commands to the appropriate devices.
Thus, the information flow out of and into the smart environment room is complete:
Observed actions are recorded using the model simulation and an additional proto-
col for tasks not modelled so far, and the environment’s reactions are simulated by
an operator sending the commands to the devices in the SE room. The users per-
forming activities in the smart environment room interact with the room’s devices
as if the task model engine was triggering them according to the task models. The
subsequent analysis of the recorded events reveals several shortcomings of the SE
system developed so far.

• Actions initiated through the use of the “Forced Start/Stop” items indicate restric-

tions in the chronical ordering of tasks expressed by the temporal relations in the
models that do not comply with the very behavior of the users or the actual opera-
tion mode of devices. It has to be decided whether to loosen the ordering restric-
tions or not. If the achievement of subgoals does not suffer from the loosening the
choice in most cases will be to allow the diverging task order by changing temporal
operators or restructuring parts of the model tree.

• Tasks protocolled outside the already modelled task trees uncover possible activi-
ties in the SE room that may benefit from task model based assistance. While the
capabilities of the SE are evolving, the task models should cover as many proc-
esses as possible. The more detailed the behavior of users is trackable the more
precise become the automatically suggested or executed assistance activities like
preparing a device for a specific usage. If single subtrees of a role’s task tree turn
out to be useless in terms of possible assistance they can be removed or reduced
later.

• By comparing the data provided by the movement sensors their accuracy and reli-
ability can be checked. Therefore, the display of executed tasks in the users’ task
trees is reduced to show movement-related tasks only. This list of activities is
compared to the protocol of the movement sensors in the SE room to discover di-
vergencies. A floor plan can be utilized to visualize the users’ motions as tracked
by the sensors and together with the technicians, which are concerned with the
functionality of the sensors their improvement is forwarded.

The evaluation process presented so far primarily targets functional facets of the

SE as a first step to establish usability tests within the SE’s development and, of
course, the future evaluation process has to cover more usability aspects.

298 G. Buchholz and S. Propp

4 Visualization and Analysis for the Usability Expert

While the task traces of the interactions between users and the system are captured,
the usability expert is provided with a number of visualizations. Figure 1 depicts our
usability evaluation environment which is implemented as Eclipse plug-in to ensure a
seamless integration into the design tools which are used for the task model-based
development of interactive systems.

Figure 1 is devided into three parts. The left-hand part shows a model of the planned
usability evaluation and includes a description of the relevant elements of our smart envi-
ronment. The behavior of all user roles is described by a task model, while the function-
ality of all device types is described by a usage model in task model notation. Such a
defined test series can be carried out several times in order to conduct several evaluation
sessions in the same scenario setup with improved model descriptions. The middle part
of figure 1 depicts one individual test scenario with certain concrete users, based on the
defined model at the left. It allows both (1) the simulation of a scenario for validation of
the models in early development phases of the smart environment and (2) the evaluation
of scenarios within an already established environment. As described in the previous
chapter, one usability expert is required to track the interaction in a real environment by
observing the user behavior and activating the modeled tasks accordingly. If the interac-
tions differ from the models the expert annotates the differences for later analysis. Hence
the annotations are instantly available within the development environment, at the spe-
cific location, where they are needed for further improvement.

Fig. 1. Usability Evaluation Environment (Usability Model, Simulation, Visualization)

The right-hand part visualizes the captured task traces of a completed subtree
(“presentation Stefan”) of the “Team Agenda” task model and the involvements of
two users. A gantt chart depicts the progress of a meeting according to a timeline,
based on aggregation and filtering of tasks. The fulfilled tasks are visualized as blue
lines and the tasks are grouped by task models depicted as green lines. In this example
a person gives a presentation while other persons are listening and welcomed to inter-
actively ask questions to the presenter.

Depending on the information interest of the expert, different visualization tech-
niques are available, e.g. a timeline to compare several scenarios as suggested by
Maly et al. [7] for classical applications.

 Towards Usability Evaluation for Smart Appliance Ensembles 299

5 Conclusion

In this paper we presented a model-based usability evaluation method for smart envi-
ronments. Since model-based techniques for the design of smart environments evolve,
usability evaluation methods are needed to exploit the arising oppurtunities. Therefore
we describe the behavior of persons in the environment in terms of task models and
interpret the interactions as trace through these models. The advantages are twofold:
on one hand the usage of the same models within system design and evaluation sim-
plifies the discovery of the cause for a detected usability issue within the design
model. On the other hand an abstract description of the usage of different devices with
task models allows comparing interactions with these different devices directly and
further enables the user to begin a task on one device and finish it on another device.
Compared to other task-based usability evaluation approaches, we not only integrate
design and evaluation at conceptual level, but also at the same artefacts.

Future research avenues comprise further work on the link between real smart en-
vironments and the usability evaluation engine to natively capture the system changes
and further sensor data.

References

1. Cook, D.J., Das, S.K.: How smart are our environments? An updated look at the state of
the art. Journal of Pervasive and Mobile Computing 3(2) (March 2007)

2. Feuerstack, S., Blumendorf, M., Albayrak, S.: Prototyping of Multimodal Interactions for
Smart Environments based on Task Models. In: AMI 2007 Workshop on Model-Driven
Software Engineering, Darmstadt, Germany (2007)

3. Ivory, M.Y., Hearst, M.A.: The state of the art in automating usability evaluation of user
interfaces. ACM Comput. Surv. 33(4), 470–516 (2001)

4. Johnsen, M., Svendsen, T., Amble, T., Holter, T., Harborg, E.: TABOR – A Norwegian
Spoken Dialogue System for Bus Travel Information. In: Proceedings of 6th International
Conference of Spoken Language Processing (ICSLP 2000), Beijing, China (2000)

5. Krug, S.: Don’t make me think, New Riders, p. 5 (2000) ISBN 978-0789723109
6. Mäkelä, K., Salonen, E.-P., Turunen, M., Hakulinen, J., Raisamo, R.: Conducting a Wiz-

ard of Oz Experiment on a Ubiquitous Computing System Doorman. In: Proceedings of
the IPNMD Workshop, Verona, December 14-15, 2001, pp. 115–119 (2001)

7. Malý, I., Slavík, P.: Towards Visual Analysis of Usability Test Logs, Hasselt, Belgium,
pp. 25–32 (2006)

8. Paternò, F., Russino, A., Santoro, C.: Remote evaluation of Mobile Applications. In:
Winckler, M., Johnson, H., Palanque, P. (eds.) TAMODIA 2007. LNCS, vol. 4849, pp.
155–168. Springer, Heidelberg (2007)

9. Reichart, D., Forbrig, P., Dittmar, A.: Task models as basis for requirements engineering
and software execution. In: TAMODIA 2004, Czech Republic, Prague (2004)

10. Sinnig, D., Wurdel, M., Forbrig, P., Chalin, P., Khendek, F.: Practical Extensions for Task
Models. In: Winckler, M., Johnson, H., Palanque, P. (eds.) TAMODIA 2007. LNCS,
vol. 4849, pp. 42–55. Springer, Heidelberg (2007)

11. Trapp, M., Schmettow, M.: Consistency in use through Model based User Interface De-
velopment. In: Workshop at CHI 2006, Montreal, Canada (2006)

12. Youngblood, G.M., Heierman, E.O., Holder, L.B., Cook, D.J.: Automation Intelligence for
the Smart Environment. In: Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence 2005, Edinburgh, Scotland, pp. 1513–1516 (2005)

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 300–305, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Task Model Refinement with Meta Operators

Maik Wurdel1, Daniel Sinnig2, and Peter Forbrig1

1 Department of Computer Science,
University of Rostock, Germany

{maik.wurdel, peter.forbrig}@uni-rostock.de
2 Faculty of Engineering and Computer Science,
Concordia University, Montreal, Quebec, Canada

d_sinnig@encs.concordia.ca

Abstract. In model-based user interface (UI) development task models are suc-
cessively refined into more detailed task specifications. To ensure that analysis
information is correctly translated into requirements and design artifacts it is
important to verify that for each transformation step the derived task model is a
valid refinement of its base specification. In this paper we present a versatile re-
finement relation between task models based on the principle of mandatory
scenario equivalence. Which scenarios are mandatory is determined by meta-
operators. These operators are assigned to tasks by the requirements engineer
depending on the role of the task model in the development lifecycle.

Keywords: Task models, requirements engineering, refinement, scenarios.

1 Introduction

In modern software engineering, the development lifecycle is divided into a series of
iterations. With each iteration a set of disciplines and associated activities are per-
formed while the resulting artifacts are incrementally perfected and refined. Task
modeling is no exception to this rule. An analysis level task model may be further
refined into requirements- and/or design level task models. In order to ensure that
elicited analysis and requirement information is correctly transferred to the design
stage it is important to verify that the involved refinement steps are valid.

In the field of model-based UI development task models play a central role. While
analysis task models serve as a starting point for development, design level task mod-
els are used as specifications for the envisioned UI. Different notations for tasks mod-
els have been introduced. A comprehensive overview of existing approaches can be
found in [1]. ConcurTaskTrees (CTT), the most common notation, promotes hierar-
chical task trees and distinguishes between several task types. In addition to the tree
structure CTT offers a set of temporal operators which restrict the potential execution
order of tasks. A detailed description of CTT can be found in [2].

Refinement between two specifications has been investigated for decades and defini-
tions have been proposed for various models [3-6]. But to our knowledge a generically
applicable notion of refinement has never been defined for task models. Various refine-
ment and equivalence criteria have been defined for labeled transition systems. Among
the most popular ones are trace-, testing- and bisimulation equivalence [7]. In this paper
we use a notion similar to trace equivalence, called mandatory scenario equivalence to

 Task Model Refinement with Meta Operators 301

verify that one task specification is a valid refinement of another task model. A scenario
is defined as a sequence of tasks which represents a single complete run through the task
model. Which scenario is mandatory depends on the usage of meta-operators, which
will be introduced in the next section. In Section 3 we provide a set of heuristics and
guidelines for creating meaningful task model refinements. Finally we conclude and
provide an outlook to future avenues.

2 Instruments of Refinement

Refinement between task models is possible in two different ways: structural refine-
ment and behavioral refinement.

Structural Refinement: The refined task model may contain more detailed informa-
tion than its base model. This can be achieved by further refining the atomic units (i.e.
the leaf tasks) of the superordinate model. It is, however, important to retain type
consistency. That is, the task type of the refined task may need to be revised such that
it corresponds to the task types of its newly defined subtasks (e.g. as per CTT seman-
tics [2] an application task can only have subtasks which are also of type applica-
tion). An exception to this rule are tasks that have been marked with the deep binding
meta-operator (will be explained in the context of behavioral refinement). These tasks
cannot change their task type and the respective subtasks need to be chosen such that
type consistency is ensured.

Behavioral Refinement: Whether a behavioral refinement is valid or not depends on
the usage of meta-operators in the respective task models. Unlike temporal operators,
meta-operators do not determine the execution order of tasks, but define which tasks
must be retained or may be omitted in the refining task model. As depicted in Table 1,
we distinguish between three different meta-operators: shallow binding, deep binding,
and exempted binding. All three operators denote tasks which need to be preserved in
all subsequent refining task models. While shallow binding only applies to its direct
operand task, deep binding applies to the entire subtask tree.

We can now define behavioral refinement as follows: Let ܶܯଵ be a task model and ܶܯଶ be a refining task model. Furthermore, let ܶܯଵ௥௘ௗ be the task model obtained
from ܶܯଵ by removing all subtasks of shallow bindings and ܶܯଶೝ೐೏ be the task model

Table 1. Meta-Operators in Support of Behavioral Refinement

Meta-Operator Interpretation

Shallow Binding (ۨ) Denotes a mandatory task which needs to be preserved in subse-
quent refining models. Subtasks may be omitted or modified and
the task type may be changed.

Deep Binding (۪) Denotes a mandatory task which, including all its subtasks and
their types, needs to be preserved in subsequent refining models.

Exempted Binding (ٓ) Denotes a newly introduced mandatory task, which is not present
in the base task model, but which (including all its subtasks)
should be preserved in all subsequent refining task models.

302 M. Wurdel, D. Sinnig, and P. Forbrig

obtained from ܶܯଶ by removing all structural refinements (relative to ܶܯଵ). Moreover,
let ्்ெభೝ೐೏ be the set of all scenarios which only contain mandatory tasks (i.e. tasks

marked with any of the meta-operators) of ܶܯଵ and let ्்ெమೝ೐೏ be the set of retained
scenarios which only contain mandatory non-exempted tasks (i.e. tasks marked with
shallow and deep binding) of ܶܯଶ. Then ܶܯଶ is a valid behavioral refinement of ܶܯଵ
if, and only if ्்ெభೝ೐೏ ൌ ्்ெమೝ೐೏ .

Table 2. Behavioral Refinement Example

Task Model (ܶܯଵ) Reduced Task Model (ܶܯଵೝ೐೏)

Refined Task Model (ܶܯଶ) (Reduced) Refined Task Model (ܶܯଶೝ೐೏)

In order to illustrate behavioral refinement, let us consider the example task models
given in Table 2. ܶܯଵ is the original task model and ܶܯଶ is the refining task model.
In order to compare ܶܯଵ and ܶܯଶ the reduced task models ܶܯଵೝ೐೏ and ܶܯଶೝ೐೏ are
derived first. As depicted, ܶܯଵೝ೐೏ is obtained from ܶܯଵ by removing 1ܣ and 2ܣ,
which are direct subtasks of ܣ. Task ܣ, is marked with the shallow binding operator
and should be retained in all refining task models. Its subtasks as well as its type,
however, may be changed in subsequent refining models. ܶܯଶೝ೐೏ is obtained from ܶܯଶ by removing the subtasks 3ܣ and 4ܣ. Both are structural refinements of ܣ rela-
tive to ܶܯଵ, or, more precisely ܶܯଵೝ೐೏.

In order to verify that ܶܯଵ is correctly refined by ܶܯଶ we need to obtain the sets
of mandatory and retained scenarios of ܶܯଵೝ೐೏ and ܶܯଶೝ೐೏, respectively. Clearly, the
set of mandatory scenarios of ܶܯଵೝ೐೏ is the singleton set ሼܣۃ, ,1ܥ ሽ. Equally the setۄ2ܥ
of retained scenarios of ܶܯଶೝ೐೏ is also ሼܣۃ, ,1ܥ ሽ. Due to equality of both sets weۄ2ܥ
can now state that ܶܯଶ is a valid refinement of ܶܯଵ. Please note that in the case of ܶܯଶ
task ܧ has been exempted from the refinement comparison with the base model ܶܯଵ. It
will, however, be taken into account for all subsequent refinement checks of ଶܶ.

 Task Model Refinement with Meta Operators 303

Behavioral refinement is heavily depending on the usage of meta-operators. The
decision of which task should be marked with which meta-operator can only be made
by the requirements engineering and domain expert. In the next section we provide a
set of heuristics for the assignment of meta-operators to tasks depending on the role of
the target task models in the development lifecycle.

3 Applied Task Model Refinement: From Analysis to Design

Based on our experiences while working with task models we found the following
general guidelines useful:

(1) Tasks marked as binding should remain binding in all subsequent refining task
models. Bindings can only be modified to more rigid ones (e.g. shallow to deep).

(2) Exempted binding is only to be used for newly introduced tasks which must be
preserved in subsequent refining models.

(3) Throughout development, structural refinement can be used to gradual refine the
superordinate model as long as type consistency is preserved.

In addition to the general guidelines we also discovered a set of heuristics which,
depending on the role of the task model in the software engineering lifecycle, help the
developer with the assignment of meta-operators to tasks. In what follows, we con-
sider three phases of development where task models play a major role: analysis,
requirement and design.

Analysis Task Models. The purpose of analysis is to understand users’ behavior such
that the requirements/design artifacts for the envisioned software can be defined as
closely to “natural” human activity as possible. The analysis task model captures the
current work situation and highlights elementary domain processes as well as exposes
bottlenecks and weaknesses of the problem domain. It is important, that refinements
of analysis models retain all crucial processes of the domain. Therefore, as a rule of
thumb, tasks that correspond to elementary business process should be either marked
with the shallow binding operator, or, if the process is crucial and fixed in its tasks,
with the deep binding operator.

Fig. 1. Analysis Task Model for an ATM Machine

Fig. 1 shows the analysis task model for the development of an ATM machine. As
typical in analysis the current situation (without taking into account the envisioned
ATM machine) is depicted. While banking operations are performed manually, the
tasks “Identify”, “Withdraw Money” and “Get Account Statement” are marked as
shallow binding tasks denoting elementary business processes of the domain. As a
consequence, any refining model needs to retain these tasks.

304 M. Wurdel, D. Sinnig, and P. Forbrig

Finally we note that an excessive usage of the binding operators is not advisable.
When moving to the requirements stage, the changes to the model are usually sub-
stantial due to the introduction of the envisioned system. An overkill of meta-
operators (especially deep binding) unnecessarily restricts the specification of the
requirements, which is often undesirable and counterproductive.

Requirement Task Models. In Fig. 2 a valid refinement of the analysis task model is
given. Clearly the structural refinements are type consistent and the set of retained sce-
narios equals the set of mandatory scenarios of the analysis task model. Generally, re-
quirement task models specify the envisioned way tasks are performed using the system
under development. The artifacts gathered during requirements specification are part of
the contract between stakeholders about the future application. Therefore, we recom-
mend to mark most tasks with the deep binding operator to ensure that all refining mod-
els truly implement the requirements. In Fig. 2, the tasks “Withdraw Money”, “Get
Account Statement” and “Finish Transaction” are marked as deep binding, requiring all
subsequent refining models to implement the tasks in the same manner. Only the task
“Identify” is marked as shallow binding. In our example, the requirements merely state
that identification is needed to perform a bank operation. How identification is per-
formed is not yet specified and will be determined by the UI designer in the next phase.
Additionally the exempt task “Check Card Lock” was introduced. It constitutes a tech-
nology specific requirement and as such was not part of the analysis task model.

Fig. 2. Requirement Task Model for an ATM Machine

Design Task Models. During design, the various tasks of the requirements model
need to be “instantiated” to a particular user interface. It is important to ensure that
the design truly implements the requirements. Typically, when moving from require-
ments to design, mainly structural refinements are used, which further detail a previ-
ously atomic task into a set of design specific subtasks. Fig. 3 depicts a valid design
task model (relative to the requirements task model of Fig. 2) for our ATM example.
It structurally refines many tasks of the requirements model. Note that due to space
constraints only the refinement of the task “Identify” is shown. Structural refinements
of “Request Withdraw”, “Request Statement”, and “Finish Transaction” are abbrevi-
ated using the symbol ٛ. In addition to structural refinement, new, design specific,
tasks may also be introduced. If these tasks need to be carried on to subsequent design
phases they have to be integrated using the exempt binding operator.

 Task Model Refinement with Meta Operators 305

Fig. 3. Design Task Model for an ATM Machine

4 Conclusion and Future Work

In this paper we proposed a refinement relation for task models, in which an artifact
may be either structurally and/or behaviorally refined. While the former is generically
applicable, the latter can be “guided” by the requirements engineer by assigning meta-
operators to tasks. More precisely meta-operators define whether a task is deemed
mandatory and should be preserved in refining models, or not. We believe that the
usage of meta-operators makes our refinement relation more flexible and versatile,
than traditional refinement relations which are often based on plain trace inclusion.

Currently, the verification of refinement is done manually. However, as the speci-
fications become more complex, efficient refinement verification requires supporting
tools. We are currently investigating how our approach can be translated into the
specification languages of existing model checkers and theorem provers. Another
future avenue deals with the definition of additional meta-operators such that bindings
cannot only be assigned to single tasks (including their subtasks) but also to a set of
temporally related tasks and temporal operators. After doing so our ultimate goal
includes the computer aided placement of meta operators since manual assignment
can be very tedious in particular for large specifications.

References

1. van Welie, M., van der Veer, G., Eliëns, A.: An Ontology for Task World Models. In: DSV-
IS 1998. Springer, Abingdon (1998)

2. Paterno, F.: Model-Based Design and Evaluation of Interactive Applications. Springer,
London (1999)

3. Khendek, F., Bourduas, S., Vincent, D.: Stepwise Design with Message Sequence Charts.
In: Proceedings of the IFIP TC6/WG6.1. Kluwer, B.V. (2001)

4. Brinksma, E., Scollo, G., Steenbergen, C.: Lotos specifications, their implementations and
their tests. In: Conformance testing methodologies and architectures for OSI protocols, pp.
468–479. IEEE Computer Society Press, Los Alamitos (1995)

5. Sinnig, D., Chalin, P., Khendek, F.: Consistency between Task Models and Use Cases. In:
Proceedings of Design, Specification and Verification of Interactive Systems 2007. Sala-
manca, Spain (2007)

6. Sinnig, D., Wurdel, M., Forbrig, P., Chalin, P., Khendek, F.: Practical Extensions for Task
Models. In: Winckler, M., Johnson, H., Palanque, P. (eds.) TAMODIA 2007. LNCS,
vol. 4849, pp. 42–55. Springer, Heidelberg (2007)

7. Bergstra, J.A.: Handbook of Process Algebra. Elsevier Science Inc., Amsterdam (2001)

T.C.N. Graham and P. Palanque (Eds.): DSVIS 2008, LNCS 5136, pp. 306–309, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Utilizing Dynamic Executable Models for User
Interface Development

Grzegorz Lehmann, Marco Blumendorf, Sebastian Feuerstack, and Sahin Albayrak

DAI-Labor, TU-Berlin
Ernst-Reuter-Platz 7, D-10587 Berlin

firstname.lastname@DAI-Labor.de

Abstract. In this demonstration we present the Multi Access Service Platform
(MASP), a model-based runtime architecture for user interface development
based on the idea of dynamic executable models. Such models are self-contained
and complete as they contain the static structure, the dynamic state information as
well as the execution logic. Utilizing dynamic executable models allows us to im-
plement a rapid prototyping approach and provide mechanisms for the extension
of the UI modeling language of the MASP.

Keywords: human-computer interaction, model-based user interfaces, runtime
interpretation.

1 Introduction

Ambient environments comprising numerous networked interaction devices challenge
interface developers to provide approaches that exploit these new capabilities. Multimo-
dality, runtime context adaptation, personalization or even end-user development are
examples for related challenges. We see two major features that can significantly em-
power user interface development. First is the possibility to modify the UI models at
runtime. This feature allows to build self-adaptive user interfaces, which react to the
current context of use. Furthermore it enables to close the gap between the design time
and the runtime as the UI designer can alter the models of a running UI and see the re-
sults of his work immediately. The second feature is the possibility of extending the
modeling language by extending its meta-models. This way the designer is no longer
limited to one modeling language and is flexible enough to deal with challenges that
will appear in the future. Moreover the architecture can then be customized for specific
applications.

In this paper we present an approach based on executable models comprising static
and dynamic information as well as the execution logic to form a foundation for the
utilization of user interface models at runtime. In the next sections we present our reali-
zation of the Multi-Access Service Platform (MASP) using the Eclipse Modeling
Framework (EMF). The demonstrated architecture allows the designer to work on mod-
els of a running application via model editors as well as the easy extension of the system
(even at runtime) according to continuously changing requirements or end-user needs
and preferences.

 Utilizing Dynamic Executable Models for User Interface Development 307

2 Multi Access Service Platform (MASP)

The MASP is a model-based runtime architecture which creates user interfaces from a
set of models conforming to different meta-models. The user interface results from
the execution of a model network comprising the task, domain, service, interaction
and context models connected with customizable mappings [6]. The peculiarity of our
approach lies within the executable nature of MASP’s models and meta-models. In
contrast to common static models, our executable models have a clearly defined exe-
cution logic and behavior specified in their meta-models. This makes them complete
in the sense that they have “everything required to produce a desired functionality of a
single problem domain” [5]. The executable meta-models provide the capabilities to
express static elements as well as behavior and runtime evolution of the system in one
single model. Additionally, the notion of the execution state as part of the model itself
leads to models with an observable and manipulable state. Combining the initial state
of a system, the processing logic, and the state information as part of dynamic execu-
table models allows us to describe them as models that provide a complete view of the
system under study over time. Thus, executable models run and have similar proper-
ties as program code. Other than code however, executable models provide a domain-
specific level of abstraction which greatly simplifies the communication with the user
or customer.

For our current implementation we have utilized the Eclipse Modeling Framework
(EMF), which is a modeling and code generation framework integrated into the Eclipse
IDE. EMF provides means to define meta-models, create models and appropriate edi-
tors. EMF is also capable of generating Java class structures for each meta-model and
allows to express execution-defining meta-model elements in form of operations for
which it then generates Java methods. These can afterwards be supplemented with Java
code fragments which allowed us to define the execution logic inside our executable
meta-models. One main feature of the Eclipse Modeling Framework supporting our
runtime approach is the possibility to create model editors for the defined meta-models.
We made use of this facility to build editors (Figure 1) that connect to the models of
running MASP applications. This allows us to manipulate running applications and ob-
serve the effects of any changes immediately as they are instantly taken into account by
the execution logic of the models.

3 Rapid Prototyping with Executable Models

We demonstrate the feasibility of our approach by showing the development process
of an interactive recipe finder, allowing to search recipes, that match selected prede-
fined criteria. When the search is completed the results are presented in form of a rec-
ipe list. The user may then either restart the search or select a recipe and proceed to its
detailed description.

After defining basic model like the task model, providing the application work-
flow, and the domain model, providing access to application data, the application can
already be executed because of the nature of the executable models. However, none of
the models does provide a detailed description of the anticipated user interface or the
interaction yet. We therefore proceed with the specification of the interaction model

308 G. Lehmann et al.

Fig. 1. Modifying an executable model of a running MASP application

containing abstract and concrete user interface elements as proposed by the Cameleon
reference framework [4]. While the application is already executed, we create ele-
ments allowing the user to provide the search criteria and start the search. The UI
elements represent interactions for specific tasks and are therefore connected with
tasks inside the task model by the means of mappings. While the models are con-
nected with each other the UI starts to emerge on the display because the mappings
synchronize the state of the UI elements with the current ETS of the task model. This
way we can see the results of our work immediately. The UI elements representing
the recipe search criteria are also connected to appropriate objects in the domain
model, so that they appear on the screen immediately. Figure 1 shows the resulting
(running) recipe finder UI on the left and the editor connected to the interaction model
on the right.

In contrast to an earlier approach we presented in [1] the manipulations the UI de-
signer performs happen directly to the model data structures, which are the same at
runtime as well as at design time. Therefore the border between both becomes
blurred. Being able to manipulate the models at runtime also paves the road for end-
user development and self-adapting systems.

4 Extending the Modeling Language

In the second part of our demonstration we show the extensibility of the MASP by
replacing one model with another one (conforming to a new meta-model) at runtime.
We complete the definition of the interaction model with the creation of UI elements
responsible for the navigation inside the Recipe Finder application. It should be pos-
sible for the user to navigate back and forth through the application, for example from
the recipe details view either to the recipe list or to the initial search criteria configu-
ration. As dialog modeling is not the responsibility of the task model a new model

 Utilizing Dynamic Executable Models for User Interface Development 309

should be introduced. Therefore we will transform the task model into a state machine
model and enrich it with additional transitions representing the desired dialog naviga-
tion. To achieve this we remove the mappings between the tasks and the UI elements
and map the latter with states and transitions in the state machine model.

In order to achieve the described extensibility we have defined a meta-meta-model
for the MASP. It distinguishes between definition-, situation- and execution elements of
its executable models. A similar classification has also been identified by Breton and
Bézivin [3]. The resulting structure of the meta-meta-model allows to generalize execu-
table meta-models and relates them with each other by the means of mappings. As each
executable model is an encapsulated entity on its own, to orchestrate multiple, inde-
pendent models into one application we have also developed a special mapping meta-
model. It enables the definition of custom mappings between elements conforming to
different meta-models based on the structures given by the meta-meta-model. Providing
an extra meta-model solely for mappings also allows to benefit from tool support and
removes the problem of mappings hard-coded into the architecture, as has been already
advised by Puerta and Eisenstein [6].

5 Summary and Outlook

In this paper we briefly described our approach of applying executable models to user
interface development in order to enable the investigation of stateful models at runtime.
The approach allows the inspection and manipulation of the application at runtime and
provides easy extensibility of the utilized modeling language. The prototypical recipe
finder application demonstrates the feasibility of our approach. In the near future, we
want to further evaluate our approach, by implementing multiple models from different
approaches like e.g. UsiXML1 and we want to further investigate the implications of our
approach to user interface development by creating enhanced UIs that facilitating context
adaptation, self-awareness and self-adaptation.

References

1. Blumendorf, M., Feuerstack, S., Albayrak, S.: Multimodal User Interfaces for Smart Envi-
ronments: The Multi-Access Service Platform. In: Advanced Visual Interfaces 2008 (2008)

2. Blumendorf, M., Feuerstack, S., Lehmann, G., Albayrak, S.: Executable Models for Hu-
man-Computer Interaction. In: DSV-IS 2008 (submitted, 2008)

3. Breton, E., Bézivin, J.: Towards an Understanding of Model Executability. In: FOIS 2001
(2001)

4. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Souchon, N., Bouillon, L., Florins, M.,
Vanderdonckt, J.: Plasticity of User Interfaces: A Revised Reference Framework. In: TA-
MODIA 2002 (2002)

5. Mellor, S.J.: Agile MDA (June 2004)
6. Puerta, A.R., Eisenstein, J.: Towards a General Computational Framework for Model-Based

Interface Development Systems. In: Intelligent User Interfaces 1999 (1999)

1 www.usixml.org

Author Index

Albayrak, Sahin 238, 306
Antunes, Pedro 29
Athènes, Sylvie 136

Bach, Cédric 15
Basnyat, Sandra 208
Blandford, Ann 1
Blumendorf, Marco 238, 306
Buchholz, Gregor 294

Calleros, Juan Manuel González 96
Calvary, Gaëlle 225
Campos, J.C. 72, 194
Coninx, Karin 155, 161, 225
Conversy, Stéphane 136, 267, 287
Curzon, Paul 1

de F.Q. Vieira, Maria 86
de Sousa, Markson R.F. 86
Demeure, Alexandre 225
Dittmar, Anke 58, 92
Doherty, Gavin 194
Dubois, Emmanuel 15
Dunlavey, Michael 149

Ferreira, Antonio 29
Feuerstack, Sebastian 238, 306
Forbrig, Peter 58, 92, 300

Gray, Phil 167
Guerrero Garćıa, Josefina 96

Haesen, Mieke 161
Harrison, M.D. 72
Harrison, Michael 194
Hennipman, Elbert-Jan 108
Hübner, Toralf 58
Hurter, Christophe 287
Hyde, Joanne 1

Itoh, Yuichi 252

Jemni Ben Ayed, Leila 102
Jourde, Frédéric 281

Kishino, Fumio 252
Kitamura, Yoshifumi 252

Ladry, Jean-François 208
Laurillau, Yann 281

Lehmann, Grzegorz 238, 306
Luyten, Kris 155, 161

McBryan, Tony 167
Memmel, Thomas 43
Moran, Alberto 281
Mori, Giulio 181

Nacenta, Miguel A. 252
Navarre, David 208
Nigay, Laurence 281
Notelaers, Sofie 161

Oppelaar, Evert-Jan 108

Palanque, Philippe 208
Papatzanis, George 1
Paternò, Fabio 181
Propp, Stefan 294

Reichart, D. 92
Reiterer, Harald 43

Sakurai, Satoshi 252
Santoni, Charles 86
Scaico, Alexandre 86
Siala, Fatma 102
Sinnig, Daniel 300
Spano, Lucio Davide 181
Stanciulescu, Adrian 121
Subramanian, Sriram 252

Tabart, Gilles 136
Tissoires, Benjamin 267
Trindade, Francisco 121
Truillet, Philippe 15

Van den Bergh, Jan 161
van der Veer, Gerrit 108
Vanderdonckt, Jean 43, 96, 121
Vanderhulst, Geert 155
Vinot, Jean-Luc 136

Winckler, Marco 96, 121
Wurdel, Maik 92, 300

Yamaguchi, Tokuo 252

	Title Page
	Preface
	Organization
	Table of Contents
	EMU in the Car: Evaluating Multimodal Usability of a Satellite Navigation System
	Introduction
	Background: Multimodal Interaction
	Overview of Original EMU Method
	Usability Evaluation of EMU
	Utility Evaluation of EMU

	Simplified EMU Method
	Illustrative Example: In-Car Navigation
	Stage 1: Defining the Scenario: Task and Environment
	Set-Up: Modalities and Possible Interaction Difficulties
	Driving: Modalities and Possible Interaction Difficulties

	Conclusions
	References

	Comparing Mixed Interactive Systems for Navigating 3D Environments in Museums
	Introduction
	Mouse-Based and Mixed Interaction Techniques Design
	GE Manipulation with a Mouse
	Design Approach
	GE-Stick
	GE-Steering Board (GE-SB)

	Experimental Settings
	Users and Material
	Procedure

	Assessment Results
	Satisfaction Analysis
	Performance Analysis

	Discussion and Future Works
	References

	An Attentive Groupware Device to Mitigate Information Overload
	Introduction
	Related Work
	The Opportunity Seeker Device
	An Attentive Brainstorming Tool
	Laboratory Experiment
	Participants
	Apparatus
	Task
	Design
	Procedure

	Results
	Group Performance
	Group Performance Over Time
	$\it {Post-Hoc}$ Analysis

	Conclusions and Future Work
	References

	Multi-fidelity User Interface Specifications
	Introduction and Motivations
	Shortcomings of, and Changes Desired in Current UI Specification Practice
	Tool Support That Is Adequate for the UI Design Problem

	Related Work
	The Common Denominator in UI-Related Modeling
	Text-Based Notations of Needs and Requirements: Personas and Scenarios
	Graphical Notations: Requirements, Usage and Behavior Modeling
	UI Prototyping and Simulation: Modeling Look and Feel
	Feedback and Review: Creating and Managing Annotations
	Zoom-Based Traveling through the UI Specification Space

	Expert Feedback and Usability Study
	Summary and Outlook
	References

	HOPS: A Prototypical Specification Tool for Interactive Systems
	Introduction
	A Motivating Example
	Modeling Interaction
	Conceptual Basis of HOPS: Higher-Order Processes
	The Specification Formalism HOPS

	Influences on This Work
	Elaboration of Usage Patterns
	Conclusions and Future Work
	References

	Systematic Analysis of Control Panel Interfaces Using Formal Tools
	Introduction
	The Example
	The Modeling Notation
	Systematic Analysis
	Checking Patterns Using IVY
	The Model Editor
	Property Editor
	Trace Visualization
	Exploring the Traces

	Extending the Analysis
	Conclusion
	References

	Investigating System Navigation Ergonomics through Model Verification
	Introduction
	Modelling and Analyzing the Navigation Component of Human Interfaces
	Model Properties
	Model Analysis
	Case Study Analysis

	Final Considerations and Future Directions
	References

	Tool Support for Representing Task Models, Dialog Models and User-Interface Specifications
	Introduction
	Task-Model Representation
	Model-Based Development of Tool Support
	Summary and Outlook
	References

	Towards a Library of Workflow User Interface Patterns
	Introduction
	State of the Art
	Developing User Interfaces for Workflow Information Systems
	Workflow User Interface Patterns
	Linking All User Interfaces
	Conclusion
	References

	Specification and Verification of Multi-agent Systems Interaction Protocols Using a Combination of AUML and Event B
	Introduction
	The Proposed Technique
	Conclusion and Perspectives
	References

	Pattern Languages as Tool for Discount Usability Engineering
	Introduction
	Background
	Rationale for the Use of Patterns
	Usability of Usability Patterns
	Relevant Questions

	HCI Design Patterns
	Approaches to Patterns
	PLML
	Relating HCI Patterns to SE
	Use of Anti-patterns

	Pattern Design and Management
	Labeling Patterns: Externalizing and Formalizing Problems
	Conditions for Pattern Matching: Analysis of Context and Forces
	Formulating Problem Statements
	Creating Meaningful and Relevant Relations between Patterns
	Putting It Together

	Requirements
	Project Phases
	Externalizing Expert Knowledge
	Development of a Single-Domain Based Tool
	Broadening the Scope

	Summary
	References

	Cascading Dialog Modeling with UsiXML
	Introduction
	Basic Concepts
	The Architecture of Dialog Arch
	Levels of Abstraction of User Interfaces
	Specifying User Interface Dialogs

	A Method for Dealing with Multi-level Dialog Specification
	Notations
	Step-Wise Method

	Case Study
	Task Model
	Abstract User Interface (AUI)
	Concrete User Interface (CUI)

	Related Work
	Conclusion and Future Work
	References

	Designing Graphical Elements for Cognitively Demanding Activities: An Account on Fine-Tuning for Colors
	Introduction
	Related Work
	Studies and Experience Feedback
	Air Traffic Control Activity
	Design Process
	Design Activities Study
	Design Accomplishment and Teaching

	Implication for Design
	Conclusion and Perspectives
	References

	Lightweight Coding of Structurally Varying Dialogs
	Introduction
	A Minimal Implementation
	Reduced Source Code
	A Realistic Example
	Performance
	Conclusion
	References

	ReWiRe: Designing Reactive Systems for Pervasive Environments
	Introduction
	Related Work
	Environment and Behavior Model
	Orchestrating Resources
	Collaborative Paint Application
	Conclusion
	References

	Toward Multi-disciplinary Model-Based (Re)Design of Sustainable User Interfaces
	Introduction
	MuiCSer
	Applying MuiCSer : UI Redesign of a Complex System
	Creating the Task Model
	Prototyping

	Toward a Runtime System Supporting Evolution
	Discussion and Conclusions
	References

	A Model-Based Approach to Supporting Configuration in Ubiquitous Systems
	Introduction
	Related Work
	Unified Model-Based Approach
	An Application Context
	A Unified Model of Configuration
	Interactive Evaluation Functions
	Interaction Evolution

	Validation of Our Approach
	The MATCH Software Framework
	Scenario for the Demonstrator Applications
	Example 1 – Utility Function, Multiple Resolutions
	Example 2 – Manual Configuration
	Example 3 – Simple Preferences
	Example 4 – Combining Evaluation Functions
	Example 5 – Context Sensitivity

	Conclusions
	References

	Exploiting Web Services and Model-Based User Interfaces for Multi-device Access to Home Applications
	Introduction
	Related Work
	Background
	The Proposed Approach
	Mapping Home Web Services onto Abstract User Interface Descriptions
	From the Abstract Description to the Concrete Descriptions and the Implementations
	Conclusions and Future Work
	References

	Resources for Situated Actions
	Introduction
	The Resourced Action Approach
	Specifying Resources
	Using Goals in Analysis
	Tool Support for Analysis

	Smart Environment Example
	Discussion
	Conclusions
	References

	An Architecture and a Formal Description Technique for the Design and Implementation of Reconfigurable User Interfaces
	Introduction
	ARINC 661 Specification
	A Generic Architecture for User Interaction Reconfiguration
	An Architecture for Reliable and Reconfigurable Interfaces
	Configuration Manager Policy and Modelling
	Input and Output Management Policies
	Input Device Configuration Manager Policy
	Output Device Configuration Manager Policy
	Configuration Manager Behaviour

	Conclusion and Perspectives
	References

	COMET(s), A Software Architecture Style and an Interactors Toolkit for Plastic User Interfaces
	Introduction
	Related Work
	CamNote++, A Running Demonstrator of COMET(s)
	The COMET Style
	Structure
	Events Propagation Inside a COMET
	Graphs of COMETs

	Developing with COMETs
	Distributing the Slides Controller on a PDA
	Requiring Redundancy for Switching the Presentation Mode
	Integrating the Pixels Mirror Feature into the OpenGL Slides Viewer

	Conclusion and Future Work
	References

	Executable Models for Human-Computer Interaction
	Introduction
	State of the Art
	Executable Models
	A Meta-Meta-Model
	Modeling with EMF
	Executable Task Models
	Summary

	Mapping-Meta-Model
	Modeling Mappings with EMF

	The Multi-access Service Platform (v2)
	Applications
	Summary and Outlook
	References

	A Middleware for Seamless Use of Multiple Displays
	Introduction
	Seamless Use of Multiple Displays
	An Architecture Using Server-Client Topology
	General Middleware Architecture
	Network Communication

	Management of GUI Objects in 3D Space
	Seamless Representation of Information on Multiple Displays
	Seamless Interaction on Multiple Displays

	Prototype
	Implementation
	Measurement of Response Time

	Discussion
	Effect of Latency
	Extensions of the Middleware

	Related Work
	Conclusion
	References

	Graphic Rendering Considered as a Compilation Chain
	Introduction
	User Interface Development Scenarios
	Graphical Rendering = Compilation Chain
	Expressing Dependencies with a Dataflow
	Implementation and Optimizations of the Graphical Compiler
	Results
	Related Work
	Conclusion
	References

	Towards Specifying Multimodal Collaborative User Interfaces: A Comparison of Collaboration Notations
	Introduction
	Empirical Comparison of Collaboration Notations
	Scope of the Comparative Study
	Rational for the Selected Notations

	Specifications Based on the Selected Notations
	Conclusions from the Comparative Study and Future Work
	References

	Towards Characterizing Visualizations
	Introduction
	Characterization Model: Card and Mackinlay
	Rich and Dynamic Visualizations from ATC
	ODS: The French Radar Screen
	ASTER: A Vertical Visualization

	Applying C&M Model
	Unveiling Similarities: Success
	Unveiling Differences: Failure
	Emerging Data
	Characterizing with Emerging Data

	Conclusion
	References

	Towards Usability Evaluation for Smart Appliance Ensembles
	Specifics of Usability Evaluation in Smart Environments
	Model-Based Design of Smart Environments
	Model-Based Usability Evaluation
	Visualization and Analysis for the Usability Expert
	Conclusion
	References

	Task Model Refinement with Meta Operators
	Introduction
	Instruments of Refinement
	Applied Task Model Refinement: From Analysis to Design
	Conclusion and Future Work
	References

	Utilizing Dynamic Executable Models for User Interface Development
	Introduction
	Multi Access Service Platform (MASP)
	Rapid Prototyping with Executable Models
	Extending the Modeling Language
	Summary and Outlook
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

